1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
  26 #define _WIN32_WINNT 0x0600
  27 
  28 // no precompiled headers
  29 #include "jvm.h"
  30 #include "classfile/classLoader.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "classfile/vmSymbols.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/disassembler.hpp"
  37 #include "interpreter/interpreter.hpp"
  38 #include "logging/log.hpp"
  39 #include "memory/allocation.inline.hpp"
  40 #include "memory/filemap.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "os_windows.inline.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm_misc.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/atomic.hpp"
  48 #include "runtime/extendedPC.hpp"
  49 #include "runtime/globals.hpp"
  50 #include "runtime/interfaceSupport.hpp"
  51 #include "runtime/java.hpp"
  52 #include "runtime/javaCalls.hpp"
  53 #include "runtime/mutexLocker.hpp"
  54 #include "runtime/objectMonitor.hpp"
  55 #include "runtime/orderAccess.inline.hpp"
  56 #include "runtime/osThread.hpp"
  57 #include "runtime/perfMemory.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/statSampler.hpp"
  60 #include "runtime/stubRoutines.hpp"
  61 #include "runtime/thread.inline.hpp"
  62 #include "runtime/threadCritical.hpp"
  63 #include "runtime/timer.hpp"
  64 #include "runtime/vm_version.hpp"
  65 #include "semaphore_windows.hpp"
  66 #include "services/attachListener.hpp"
  67 #include "services/memTracker.hpp"
  68 #include "services/runtimeService.hpp"
  69 #include "utilities/align.hpp"
  70 #include "utilities/decoder.hpp"
  71 #include "utilities/defaultStream.hpp"
  72 #include "utilities/events.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/vmError.hpp"
  76 #include "symbolengine.hpp"
  77 #include "windbghelp.hpp"
  78 
  79 
  80 #ifdef _DEBUG
  81 #include <crtdbg.h>
  82 #endif
  83 
  84 
  85 #include <windows.h>
  86 #include <sys/types.h>
  87 #include <sys/stat.h>
  88 #include <sys/timeb.h>
  89 #include <objidl.h>
  90 #include <shlobj.h>
  91 
  92 #include <malloc.h>
  93 #include <signal.h>
  94 #include <direct.h>
  95 #include <errno.h>
  96 #include <fcntl.h>
  97 #include <io.h>
  98 #include <process.h>              // For _beginthreadex(), _endthreadex()
  99 #include <imagehlp.h>             // For os::dll_address_to_function_name
 100 // for enumerating dll libraries
 101 #include <vdmdbg.h>
 102 #include <psapi.h>
 103 
 104 // for timer info max values which include all bits
 105 #define ALL_64_BITS CONST64(-1)
 106 
 107 // For DLL loading/load error detection
 108 // Values of PE COFF
 109 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 110 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 111 
 112 static HANDLE main_process;
 113 static HANDLE main_thread;
 114 static int    main_thread_id;
 115 
 116 static FILETIME process_creation_time;
 117 static FILETIME process_exit_time;
 118 static FILETIME process_user_time;
 119 static FILETIME process_kernel_time;
 120 
 121 #ifdef _M_AMD64
 122   #define __CPU__ amd64
 123 #else
 124   #define __CPU__ i486
 125 #endif
 126 
 127 // save DLL module handle, used by GetModuleFileName
 128 
 129 HINSTANCE vm_lib_handle;
 130 
 131 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 132   switch (reason) {
 133   case DLL_PROCESS_ATTACH:
 134     vm_lib_handle = hinst;
 135     if (ForceTimeHighResolution) {
 136       timeBeginPeriod(1L);
 137     }
 138     WindowsDbgHelp::pre_initialize();
 139     SymbolEngine::pre_initialize();
 140     break;
 141   case DLL_PROCESS_DETACH:
 142     if (ForceTimeHighResolution) {
 143       timeEndPeriod(1L);
 144     }
 145     break;
 146   default:
 147     break;
 148   }
 149   return true;
 150 }
 151 
 152 static inline double fileTimeAsDouble(FILETIME* time) {
 153   const double high  = (double) ((unsigned int) ~0);
 154   const double split = 10000000.0;
 155   double result = (time->dwLowDateTime / split) +
 156                    time->dwHighDateTime * (high/split);
 157   return result;
 158 }
 159 
 160 // Implementation of os
 161 
 162 bool os::unsetenv(const char* name) {
 163   assert(name != NULL, "Null pointer");
 164   return (SetEnvironmentVariable(name, NULL) == TRUE);
 165 }
 166 
 167 // No setuid programs under Windows.
 168 bool os::have_special_privileges() {
 169   return false;
 170 }
 171 
 172 
 173 // This method is  a periodic task to check for misbehaving JNI applications
 174 // under CheckJNI, we can add any periodic checks here.
 175 // For Windows at the moment does nothing
 176 void os::run_periodic_checks() {
 177   return;
 178 }
 179 
 180 // previous UnhandledExceptionFilter, if there is one
 181 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 182 
 183 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 184 
 185 void os::init_system_properties_values() {
 186   // sysclasspath, java_home, dll_dir
 187   {
 188     char *home_path;
 189     char *dll_path;
 190     char *pslash;
 191     char *bin = "\\bin";
 192     char home_dir[MAX_PATH + 1];
 193     char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
 194 
 195     if (alt_home_dir != NULL)  {
 196       strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
 197       home_dir[MAX_PATH] = '\0';
 198     } else {
 199       os::jvm_path(home_dir, sizeof(home_dir));
 200       // Found the full path to jvm.dll.
 201       // Now cut the path to <java_home>/jre if we can.
 202       *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
 203       pslash = strrchr(home_dir, '\\');
 204       if (pslash != NULL) {
 205         *pslash = '\0';                   // get rid of \{client|server}
 206         pslash = strrchr(home_dir, '\\');
 207         if (pslash != NULL) {
 208           *pslash = '\0';                 // get rid of \bin
 209         }
 210       }
 211     }
 212 
 213     home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 214     if (home_path == NULL) {
 215       return;
 216     }
 217     strcpy(home_path, home_dir);
 218     Arguments::set_java_home(home_path);
 219     FREE_C_HEAP_ARRAY(char, home_path);
 220 
 221     dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
 222                                 mtInternal);
 223     if (dll_path == NULL) {
 224       return;
 225     }
 226     strcpy(dll_path, home_dir);
 227     strcat(dll_path, bin);
 228     Arguments::set_dll_dir(dll_path);
 229     FREE_C_HEAP_ARRAY(char, dll_path);
 230 
 231     if (!set_boot_path('\\', ';')) {
 232       return;
 233     }
 234   }
 235 
 236 // library_path
 237 #define EXT_DIR "\\lib\\ext"
 238 #define BIN_DIR "\\bin"
 239 #define PACKAGE_DIR "\\Sun\\Java"
 240   {
 241     // Win32 library search order (See the documentation for LoadLibrary):
 242     //
 243     // 1. The directory from which application is loaded.
 244     // 2. The system wide Java Extensions directory (Java only)
 245     // 3. System directory (GetSystemDirectory)
 246     // 4. Windows directory (GetWindowsDirectory)
 247     // 5. The PATH environment variable
 248     // 6. The current directory
 249 
 250     char *library_path;
 251     char tmp[MAX_PATH];
 252     char *path_str = ::getenv("PATH");
 253 
 254     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 255                                     sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 256 
 257     library_path[0] = '\0';
 258 
 259     GetModuleFileName(NULL, tmp, sizeof(tmp));
 260     *(strrchr(tmp, '\\')) = '\0';
 261     strcat(library_path, tmp);
 262 
 263     GetWindowsDirectory(tmp, sizeof(tmp));
 264     strcat(library_path, ";");
 265     strcat(library_path, tmp);
 266     strcat(library_path, PACKAGE_DIR BIN_DIR);
 267 
 268     GetSystemDirectory(tmp, sizeof(tmp));
 269     strcat(library_path, ";");
 270     strcat(library_path, tmp);
 271 
 272     GetWindowsDirectory(tmp, sizeof(tmp));
 273     strcat(library_path, ";");
 274     strcat(library_path, tmp);
 275 
 276     if (path_str) {
 277       strcat(library_path, ";");
 278       strcat(library_path, path_str);
 279     }
 280 
 281     strcat(library_path, ";.");
 282 
 283     Arguments::set_library_path(library_path);
 284     FREE_C_HEAP_ARRAY(char, library_path);
 285   }
 286 
 287   // Default extensions directory
 288   {
 289     char path[MAX_PATH];
 290     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 291     GetWindowsDirectory(path, MAX_PATH);
 292     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 293             path, PACKAGE_DIR, EXT_DIR);
 294     Arguments::set_ext_dirs(buf);
 295   }
 296   #undef EXT_DIR
 297   #undef BIN_DIR
 298   #undef PACKAGE_DIR
 299 
 300 #ifndef _WIN64
 301   // set our UnhandledExceptionFilter and save any previous one
 302   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 303 #endif
 304 
 305   // Done
 306   return;
 307 }
 308 
 309 void os::breakpoint() {
 310   DebugBreak();
 311 }
 312 
 313 // Invoked from the BREAKPOINT Macro
 314 extern "C" void breakpoint() {
 315   os::breakpoint();
 316 }
 317 
 318 // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 319 // So far, this method is only used by Native Memory Tracking, which is
 320 // only supported on Windows XP or later.
 321 //
 322 int os::get_native_stack(address* stack, int frames, int toSkip) {
 323   int captured = RtlCaptureStackBackTrace(toSkip + 1, frames, (PVOID*)stack, NULL);
 324   for (int index = captured; index < frames; index ++) {
 325     stack[index] = NULL;
 326   }
 327   return captured;
 328 }
 329 
 330 
 331 // os::current_stack_base()
 332 //
 333 //   Returns the base of the stack, which is the stack's
 334 //   starting address.  This function must be called
 335 //   while running on the stack of the thread being queried.
 336 
 337 address os::current_stack_base() {
 338   MEMORY_BASIC_INFORMATION minfo;
 339   address stack_bottom;
 340   size_t stack_size;
 341 
 342   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 343   stack_bottom =  (address)minfo.AllocationBase;
 344   stack_size = minfo.RegionSize;
 345 
 346   // Add up the sizes of all the regions with the same
 347   // AllocationBase.
 348   while (1) {
 349     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 350     if (stack_bottom == (address)minfo.AllocationBase) {
 351       stack_size += minfo.RegionSize;
 352     } else {
 353       break;
 354     }
 355   }
 356   return stack_bottom + stack_size;
 357 }
 358 
 359 size_t os::current_stack_size() {
 360   size_t sz;
 361   MEMORY_BASIC_INFORMATION minfo;
 362   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 363   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 364   return sz;
 365 }
 366 
 367 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 368   const struct tm* time_struct_ptr = localtime(clock);
 369   if (time_struct_ptr != NULL) {
 370     *res = *time_struct_ptr;
 371     return res;
 372   }
 373   return NULL;
 374 }
 375 
 376 struct tm* os::gmtime_pd(const time_t* clock, struct tm* res) {
 377   const struct tm* time_struct_ptr = gmtime(clock);
 378   if (time_struct_ptr != NULL) {
 379     *res = *time_struct_ptr;
 380     return res;
 381   }
 382   return NULL;
 383 }
 384 
 385 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 386 
 387 // Thread start routine for all newly created threads
 388 static unsigned __stdcall thread_native_entry(Thread* thread) {
 389   // Try to randomize the cache line index of hot stack frames.
 390   // This helps when threads of the same stack traces evict each other's
 391   // cache lines. The threads can be either from the same JVM instance, or
 392   // from different JVM instances. The benefit is especially true for
 393   // processors with hyperthreading technology.
 394   static int counter = 0;
 395   int pid = os::current_process_id();
 396   _alloca(((pid ^ counter++) & 7) * 128);
 397 
 398   thread->initialize_thread_current();
 399 
 400   OSThread* osthr = thread->osthread();
 401   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 402 
 403   if (UseNUMA) {
 404     int lgrp_id = os::numa_get_group_id();
 405     if (lgrp_id != -1) {
 406       thread->set_lgrp_id(lgrp_id);
 407     }
 408   }
 409 
 410   // Diagnostic code to investigate JDK-6573254
 411   int res = 30115;  // non-java thread
 412   if (thread->is_Java_thread()) {
 413     res = 20115;    // java thread
 414   }
 415 
 416   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").", os::current_thread_id());
 417 
 418   // Install a win32 structured exception handler around every thread created
 419   // by VM, so VM can generate error dump when an exception occurred in non-
 420   // Java thread (e.g. VM thread).
 421   __try {
 422     thread->run();
 423   } __except(topLevelExceptionFilter(
 424                                      (_EXCEPTION_POINTERS*)_exception_info())) {
 425     // Nothing to do.
 426   }
 427 
 428   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
 429 
 430   // One less thread is executing
 431   // When the VMThread gets here, the main thread may have already exited
 432   // which frees the CodeHeap containing the Atomic::add code
 433   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 434     Atomic::dec(&os::win32::_os_thread_count);
 435   }
 436 
 437   // If a thread has not deleted itself ("delete this") as part of its
 438   // termination sequence, we have to ensure thread-local-storage is
 439   // cleared before we actually terminate. No threads should ever be
 440   // deleted asynchronously with respect to their termination.
 441   if (Thread::current_or_null_safe() != NULL) {
 442     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 443     thread->clear_thread_current();
 444   }
 445 
 446   // Thread must not return from exit_process_or_thread(), but if it does,
 447   // let it proceed to exit normally
 448   return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
 449 }
 450 
 451 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
 452                                   int thread_id) {
 453   // Allocate the OSThread object
 454   OSThread* osthread = new OSThread(NULL, NULL);
 455   if (osthread == NULL) return NULL;
 456 
 457   // Initialize support for Java interrupts
 458   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 459   if (interrupt_event == NULL) {
 460     delete osthread;
 461     return NULL;
 462   }
 463   osthread->set_interrupt_event(interrupt_event);
 464 
 465   // Store info on the Win32 thread into the OSThread
 466   osthread->set_thread_handle(thread_handle);
 467   osthread->set_thread_id(thread_id);
 468 
 469   if (UseNUMA) {
 470     int lgrp_id = os::numa_get_group_id();
 471     if (lgrp_id != -1) {
 472       thread->set_lgrp_id(lgrp_id);
 473     }
 474   }
 475 
 476   // Initial thread state is INITIALIZED, not SUSPENDED
 477   osthread->set_state(INITIALIZED);
 478 
 479   return osthread;
 480 }
 481 
 482 
 483 bool os::create_attached_thread(JavaThread* thread) {
 484 #ifdef ASSERT
 485   thread->verify_not_published();
 486 #endif
 487   HANDLE thread_h;
 488   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 489                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 490     fatal("DuplicateHandle failed\n");
 491   }
 492   OSThread* osthread = create_os_thread(thread, thread_h,
 493                                         (int)current_thread_id());
 494   if (osthread == NULL) {
 495     return false;
 496   }
 497 
 498   // Initial thread state is RUNNABLE
 499   osthread->set_state(RUNNABLE);
 500 
 501   thread->set_osthread(osthread);
 502 
 503   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
 504     os::current_thread_id());
 505 
 506   return true;
 507 }
 508 
 509 bool os::create_main_thread(JavaThread* thread) {
 510 #ifdef ASSERT
 511   thread->verify_not_published();
 512 #endif
 513   if (_starting_thread == NULL) {
 514     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 515     if (_starting_thread == NULL) {
 516       return false;
 517     }
 518   }
 519 
 520   // The primordial thread is runnable from the start)
 521   _starting_thread->set_state(RUNNABLE);
 522 
 523   thread->set_osthread(_starting_thread);
 524   return true;
 525 }
 526 
 527 // Helper function to trace _beginthreadex attributes,
 528 //  similar to os::Posix::describe_pthread_attr()
 529 static char* describe_beginthreadex_attributes(char* buf, size_t buflen,
 530                                                size_t stacksize, unsigned initflag) {
 531   stringStream ss(buf, buflen);
 532   if (stacksize == 0) {
 533     ss.print("stacksize: default, ");
 534   } else {
 535     ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
 536   }
 537   ss.print("flags: ");
 538   #define PRINT_FLAG(f) if (initflag & f) ss.print( #f " ");
 539   #define ALL(X) \
 540     X(CREATE_SUSPENDED) \
 541     X(STACK_SIZE_PARAM_IS_A_RESERVATION)
 542   ALL(PRINT_FLAG)
 543   #undef ALL
 544   #undef PRINT_FLAG
 545   return buf;
 546 }
 547 
 548 // Allocate and initialize a new OSThread
 549 bool os::create_thread(Thread* thread, ThreadType thr_type,
 550                        size_t stack_size) {
 551   unsigned thread_id;
 552 
 553   // Allocate the OSThread object
 554   OSThread* osthread = new OSThread(NULL, NULL);
 555   if (osthread == NULL) {
 556     return false;
 557   }
 558 
 559   // Initialize support for Java interrupts
 560   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 561   if (interrupt_event == NULL) {
 562     delete osthread;
 563     return NULL;
 564   }
 565   osthread->set_interrupt_event(interrupt_event);
 566   osthread->set_interrupted(false);
 567 
 568   thread->set_osthread(osthread);
 569 
 570   if (stack_size == 0) {
 571     switch (thr_type) {
 572     case os::java_thread:
 573       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 574       if (JavaThread::stack_size_at_create() > 0) {
 575         stack_size = JavaThread::stack_size_at_create();
 576       }
 577       break;
 578     case os::compiler_thread:
 579       if (CompilerThreadStackSize > 0) {
 580         stack_size = (size_t)(CompilerThreadStackSize * K);
 581         break;
 582       } // else fall through:
 583         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 584     case os::vm_thread:
 585     case os::pgc_thread:
 586     case os::cgc_thread:
 587     case os::watcher_thread:
 588       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 589       break;
 590     }
 591   }
 592 
 593   // Create the Win32 thread
 594   //
 595   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 596   // does not specify stack size. Instead, it specifies the size of
 597   // initially committed space. The stack size is determined by
 598   // PE header in the executable. If the committed "stack_size" is larger
 599   // than default value in the PE header, the stack is rounded up to the
 600   // nearest multiple of 1MB. For example if the launcher has default
 601   // stack size of 320k, specifying any size less than 320k does not
 602   // affect the actual stack size at all, it only affects the initial
 603   // commitment. On the other hand, specifying 'stack_size' larger than
 604   // default value may cause significant increase in memory usage, because
 605   // not only the stack space will be rounded up to MB, but also the
 606   // entire space is committed upfront.
 607   //
 608   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 609   // for CreateThread() that can treat 'stack_size' as stack size. However we
 610   // are not supposed to call CreateThread() directly according to MSDN
 611   // document because JVM uses C runtime library. The good news is that the
 612   // flag appears to work with _beginthredex() as well.
 613 
 614   const unsigned initflag = CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION;
 615   HANDLE thread_handle =
 616     (HANDLE)_beginthreadex(NULL,
 617                            (unsigned)stack_size,
 618                            (unsigned (__stdcall *)(void*)) thread_native_entry,
 619                            thread,
 620                            initflag,
 621                            &thread_id);
 622 
 623   char buf[64];
 624   if (thread_handle != NULL) {
 625     log_info(os, thread)("Thread started (tid: %u, attributes: %s)",
 626       thread_id, describe_beginthreadex_attributes(buf, sizeof(buf), stack_size, initflag));
 627   } else {
 628     log_warning(os, thread)("Failed to start thread - _beginthreadex failed (%s) for attributes: %s.",
 629       os::errno_name(errno), describe_beginthreadex_attributes(buf, sizeof(buf), stack_size, initflag));
 630   }
 631 
 632   if (thread_handle == NULL) {
 633     // Need to clean up stuff we've allocated so far
 634     CloseHandle(osthread->interrupt_event());
 635     thread->set_osthread(NULL);
 636     delete osthread;
 637     return NULL;
 638   }
 639 
 640   Atomic::inc(&os::win32::_os_thread_count);
 641 
 642   // Store info on the Win32 thread into the OSThread
 643   osthread->set_thread_handle(thread_handle);
 644   osthread->set_thread_id(thread_id);
 645 
 646   // Initial thread state is INITIALIZED, not SUSPENDED
 647   osthread->set_state(INITIALIZED);
 648 
 649   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 650   return true;
 651 }
 652 
 653 
 654 // Free Win32 resources related to the OSThread
 655 void os::free_thread(OSThread* osthread) {
 656   assert(osthread != NULL, "osthread not set");
 657 
 658   // We are told to free resources of the argument thread,
 659   // but we can only really operate on the current thread.
 660   assert(Thread::current()->osthread() == osthread,
 661          "os::free_thread but not current thread");
 662 
 663   CloseHandle(osthread->thread_handle());
 664   CloseHandle(osthread->interrupt_event());
 665   delete osthread;
 666 }
 667 
 668 static jlong first_filetime;
 669 static jlong initial_performance_count;
 670 static jlong performance_frequency;
 671 
 672 
 673 jlong as_long(LARGE_INTEGER x) {
 674   jlong result = 0; // initialization to avoid warning
 675   set_high(&result, x.HighPart);
 676   set_low(&result, x.LowPart);
 677   return result;
 678 }
 679 
 680 
 681 jlong os::elapsed_counter() {
 682   LARGE_INTEGER count;
 683   QueryPerformanceCounter(&count);
 684   return as_long(count) - initial_performance_count;
 685 }
 686 
 687 
 688 jlong os::elapsed_frequency() {
 689   return performance_frequency;
 690 }
 691 
 692 
 693 julong os::available_memory() {
 694   return win32::available_memory();
 695 }
 696 
 697 julong os::win32::available_memory() {
 698   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 699   // value if total memory is larger than 4GB
 700   MEMORYSTATUSEX ms;
 701   ms.dwLength = sizeof(ms);
 702   GlobalMemoryStatusEx(&ms);
 703 
 704   return (julong)ms.ullAvailPhys;
 705 }
 706 
 707 julong os::physical_memory() {
 708   return win32::physical_memory();
 709 }
 710 
 711 bool os::has_allocatable_memory_limit(julong* limit) {
 712   MEMORYSTATUSEX ms;
 713   ms.dwLength = sizeof(ms);
 714   GlobalMemoryStatusEx(&ms);
 715 #ifdef _LP64
 716   *limit = (julong)ms.ullAvailVirtual;
 717   return true;
 718 #else
 719   // Limit to 1400m because of the 2gb address space wall
 720   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 721   return true;
 722 #endif
 723 }
 724 
 725 int os::active_processor_count() {
 726   DWORD_PTR lpProcessAffinityMask = 0;
 727   DWORD_PTR lpSystemAffinityMask = 0;
 728   int proc_count = processor_count();
 729   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 730       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 731     // Nof active processors is number of bits in process affinity mask
 732     int bitcount = 0;
 733     while (lpProcessAffinityMask != 0) {
 734       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 735       bitcount++;
 736     }
 737     return bitcount;
 738   } else {
 739     return proc_count;
 740   }
 741 }
 742 
 743 void os::set_native_thread_name(const char *name) {
 744 
 745   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
 746   //
 747   // Note that unfortunately this only works if the process
 748   // is already attached to a debugger; debugger must observe
 749   // the exception below to show the correct name.
 750 
 751   // If there is no debugger attached skip raising the exception
 752   if (!IsDebuggerPresent()) {
 753     return;
 754   }
 755 
 756   const DWORD MS_VC_EXCEPTION = 0x406D1388;
 757   struct {
 758     DWORD dwType;     // must be 0x1000
 759     LPCSTR szName;    // pointer to name (in user addr space)
 760     DWORD dwThreadID; // thread ID (-1=caller thread)
 761     DWORD dwFlags;    // reserved for future use, must be zero
 762   } info;
 763 
 764   info.dwType = 0x1000;
 765   info.szName = name;
 766   info.dwThreadID = -1;
 767   info.dwFlags = 0;
 768 
 769   __try {
 770     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
 771   } __except(EXCEPTION_EXECUTE_HANDLER) {}
 772 }
 773 
 774 bool os::distribute_processes(uint length, uint* distribution) {
 775   // Not yet implemented.
 776   return false;
 777 }
 778 
 779 bool os::bind_to_processor(uint processor_id) {
 780   // Not yet implemented.
 781   return false;
 782 }
 783 
 784 void os::win32::initialize_performance_counter() {
 785   LARGE_INTEGER count;
 786   QueryPerformanceFrequency(&count);
 787   performance_frequency = as_long(count);
 788   QueryPerformanceCounter(&count);
 789   initial_performance_count = as_long(count);
 790 }
 791 
 792 
 793 double os::elapsedTime() {
 794   return (double) elapsed_counter() / (double) elapsed_frequency();
 795 }
 796 
 797 
 798 // Windows format:
 799 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 800 // Java format:
 801 //   Java standards require the number of milliseconds since 1/1/1970
 802 
 803 // Constant offset - calculated using offset()
 804 static jlong  _offset   = 116444736000000000;
 805 // Fake time counter for reproducible results when debugging
 806 static jlong  fake_time = 0;
 807 
 808 #ifdef ASSERT
 809 // Just to be safe, recalculate the offset in debug mode
 810 static jlong _calculated_offset = 0;
 811 static int   _has_calculated_offset = 0;
 812 
 813 jlong offset() {
 814   if (_has_calculated_offset) return _calculated_offset;
 815   SYSTEMTIME java_origin;
 816   java_origin.wYear          = 1970;
 817   java_origin.wMonth         = 1;
 818   java_origin.wDayOfWeek     = 0; // ignored
 819   java_origin.wDay           = 1;
 820   java_origin.wHour          = 0;
 821   java_origin.wMinute        = 0;
 822   java_origin.wSecond        = 0;
 823   java_origin.wMilliseconds  = 0;
 824   FILETIME jot;
 825   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 826     fatal("Error = %d\nWindows error", GetLastError());
 827   }
 828   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 829   _has_calculated_offset = 1;
 830   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 831   return _calculated_offset;
 832 }
 833 #else
 834 jlong offset() {
 835   return _offset;
 836 }
 837 #endif
 838 
 839 jlong windows_to_java_time(FILETIME wt) {
 840   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 841   return (a - offset()) / 10000;
 842 }
 843 
 844 // Returns time ticks in (10th of micro seconds)
 845 jlong windows_to_time_ticks(FILETIME wt) {
 846   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 847   return (a - offset());
 848 }
 849 
 850 FILETIME java_to_windows_time(jlong l) {
 851   jlong a = (l * 10000) + offset();
 852   FILETIME result;
 853   result.dwHighDateTime = high(a);
 854   result.dwLowDateTime  = low(a);
 855   return result;
 856 }
 857 
 858 bool os::supports_vtime() { return true; }
 859 bool os::enable_vtime() { return false; }
 860 bool os::vtime_enabled() { return false; }
 861 
 862 double os::elapsedVTime() {
 863   FILETIME created;
 864   FILETIME exited;
 865   FILETIME kernel;
 866   FILETIME user;
 867   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 868     // the resolution of windows_to_java_time() should be sufficient (ms)
 869     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 870   } else {
 871     return elapsedTime();
 872   }
 873 }
 874 
 875 jlong os::javaTimeMillis() {
 876   if (UseFakeTimers) {
 877     return fake_time++;
 878   } else {
 879     FILETIME wt;
 880     GetSystemTimeAsFileTime(&wt);
 881     return windows_to_java_time(wt);
 882   }
 883 }
 884 
 885 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 886   FILETIME wt;
 887   GetSystemTimeAsFileTime(&wt);
 888   jlong ticks = windows_to_time_ticks(wt); // 10th of micros
 889   jlong secs = jlong(ticks / 10000000); // 10000 * 1000
 890   seconds = secs;
 891   nanos = jlong(ticks - (secs*10000000)) * 100;
 892 }
 893 
 894 jlong os::javaTimeNanos() {
 895     LARGE_INTEGER current_count;
 896     QueryPerformanceCounter(&current_count);
 897     double current = as_long(current_count);
 898     double freq = performance_frequency;
 899     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 900     return time;
 901 }
 902 
 903 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 904   jlong freq = performance_frequency;
 905   if (freq < NANOSECS_PER_SEC) {
 906     // the performance counter is 64 bits and we will
 907     // be multiplying it -- so no wrap in 64 bits
 908     info_ptr->max_value = ALL_64_BITS;
 909   } else if (freq > NANOSECS_PER_SEC) {
 910     // use the max value the counter can reach to
 911     // determine the max value which could be returned
 912     julong max_counter = (julong)ALL_64_BITS;
 913     info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 914   } else {
 915     // the performance counter is 64 bits and we will
 916     // be using it directly -- so no wrap in 64 bits
 917     info_ptr->max_value = ALL_64_BITS;
 918   }
 919 
 920   // using a counter, so no skipping
 921   info_ptr->may_skip_backward = false;
 922   info_ptr->may_skip_forward = false;
 923 
 924   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 925 }
 926 
 927 char* os::local_time_string(char *buf, size_t buflen) {
 928   SYSTEMTIME st;
 929   GetLocalTime(&st);
 930   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 931                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 932   return buf;
 933 }
 934 
 935 bool os::getTimesSecs(double* process_real_time,
 936                       double* process_user_time,
 937                       double* process_system_time) {
 938   HANDLE h_process = GetCurrentProcess();
 939   FILETIME create_time, exit_time, kernel_time, user_time;
 940   BOOL result = GetProcessTimes(h_process,
 941                                 &create_time,
 942                                 &exit_time,
 943                                 &kernel_time,
 944                                 &user_time);
 945   if (result != 0) {
 946     FILETIME wt;
 947     GetSystemTimeAsFileTime(&wt);
 948     jlong rtc_millis = windows_to_java_time(wt);
 949     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 950     *process_user_time =
 951       (double) jlong_from(user_time.dwHighDateTime, user_time.dwLowDateTime) / (10 * MICROUNITS);
 952     *process_system_time =
 953       (double) jlong_from(kernel_time.dwHighDateTime, kernel_time.dwLowDateTime) / (10 * MICROUNITS);
 954     return true;
 955   } else {
 956     return false;
 957   }
 958 }
 959 
 960 void os::shutdown() {
 961   // allow PerfMemory to attempt cleanup of any persistent resources
 962   perfMemory_exit();
 963 
 964   // flush buffered output, finish log files
 965   ostream_abort();
 966 
 967   // Check for abort hook
 968   abort_hook_t abort_hook = Arguments::abort_hook();
 969   if (abort_hook != NULL) {
 970     abort_hook();
 971   }
 972 }
 973 
 974 
 975 static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
 976                                          PMINIDUMP_EXCEPTION_INFORMATION,
 977                                          PMINIDUMP_USER_STREAM_INFORMATION,
 978                                          PMINIDUMP_CALLBACK_INFORMATION);
 979 
 980 static HANDLE dumpFile = NULL;
 981 
 982 // Check if dump file can be created.
 983 void os::check_dump_limit(char* buffer, size_t buffsz) {
 984   bool status = true;
 985   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
 986     jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
 987     status = false;
 988   }
 989 
 990 #ifndef ASSERT
 991   if (!os::win32::is_windows_server() && FLAG_IS_DEFAULT(CreateCoredumpOnCrash)) {
 992     jio_snprintf(buffer, buffsz, "Minidumps are not enabled by default on client versions of Windows");
 993     status = false;
 994   }
 995 #endif
 996 
 997   if (status) {
 998     const char* cwd = get_current_directory(NULL, 0);
 999     int pid = current_process_id();
1000     if (cwd != NULL) {
1001       jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
1002     } else {
1003       jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
1004     }
1005 
1006     if (dumpFile == NULL &&
1007        (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
1008                  == INVALID_HANDLE_VALUE) {
1009       jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
1010       status = false;
1011     }
1012   }
1013   VMError::record_coredump_status(buffer, status);
1014 }
1015 
1016 void os::abort(bool dump_core, void* siginfo, const void* context) {
1017   EXCEPTION_POINTERS ep;
1018   MINIDUMP_EXCEPTION_INFORMATION mei;
1019   MINIDUMP_EXCEPTION_INFORMATION* pmei;
1020 
1021   HANDLE hProcess = GetCurrentProcess();
1022   DWORD processId = GetCurrentProcessId();
1023   MINIDUMP_TYPE dumpType;
1024 
1025   shutdown();
1026   if (!dump_core || dumpFile == NULL) {
1027     if (dumpFile != NULL) {
1028       CloseHandle(dumpFile);
1029     }
1030     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1031   }
1032 
1033   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData |
1034     MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo | MiniDumpWithUnloadedModules);
1035 
1036   if (siginfo != NULL && context != NULL) {
1037     ep.ContextRecord = (PCONTEXT) context;
1038     ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
1039 
1040     mei.ThreadId = GetCurrentThreadId();
1041     mei.ExceptionPointers = &ep;
1042     pmei = &mei;
1043   } else {
1044     pmei = NULL;
1045   }
1046 
1047   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1048   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1049   if (!WindowsDbgHelp::miniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) &&
1050       !WindowsDbgHelp::miniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL)) {
1051     jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
1052   }
1053   CloseHandle(dumpFile);
1054   win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1055 }
1056 
1057 // Die immediately, no exit hook, no abort hook, no cleanup.
1058 void os::die() {
1059   win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1060 }
1061 
1062 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1063 //  * dirent_md.c       1.15 00/02/02
1064 //
1065 // The declarations for DIR and struct dirent are in jvm_win32.h.
1066 
1067 // Caller must have already run dirname through JVM_NativePath, which removes
1068 // duplicate slashes and converts all instances of '/' into '\\'.
1069 
1070 DIR * os::opendir(const char *dirname) {
1071   assert(dirname != NULL, "just checking");   // hotspot change
1072   DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1073   DWORD fattr;                                // hotspot change
1074   char alt_dirname[4] = { 0, 0, 0, 0 };
1075 
1076   if (dirp == 0) {
1077     errno = ENOMEM;
1078     return 0;
1079   }
1080 
1081   // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1082   // as a directory in FindFirstFile().  We detect this case here and
1083   // prepend the current drive name.
1084   //
1085   if (dirname[1] == '\0' && dirname[0] == '\\') {
1086     alt_dirname[0] = _getdrive() + 'A' - 1;
1087     alt_dirname[1] = ':';
1088     alt_dirname[2] = '\\';
1089     alt_dirname[3] = '\0';
1090     dirname = alt_dirname;
1091   }
1092 
1093   dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1094   if (dirp->path == 0) {
1095     free(dirp);
1096     errno = ENOMEM;
1097     return 0;
1098   }
1099   strcpy(dirp->path, dirname);
1100 
1101   fattr = GetFileAttributes(dirp->path);
1102   if (fattr == 0xffffffff) {
1103     free(dirp->path);
1104     free(dirp);
1105     errno = ENOENT;
1106     return 0;
1107   } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1108     free(dirp->path);
1109     free(dirp);
1110     errno = ENOTDIR;
1111     return 0;
1112   }
1113 
1114   // Append "*.*", or possibly "\\*.*", to path
1115   if (dirp->path[1] == ':' &&
1116       (dirp->path[2] == '\0' ||
1117       (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1118     // No '\\' needed for cases like "Z:" or "Z:\"
1119     strcat(dirp->path, "*.*");
1120   } else {
1121     strcat(dirp->path, "\\*.*");
1122   }
1123 
1124   dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1125   if (dirp->handle == INVALID_HANDLE_VALUE) {
1126     if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1127       free(dirp->path);
1128       free(dirp);
1129       errno = EACCES;
1130       return 0;
1131     }
1132   }
1133   return dirp;
1134 }
1135 
1136 // parameter dbuf unused on Windows
1137 struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1138   assert(dirp != NULL, "just checking");      // hotspot change
1139   if (dirp->handle == INVALID_HANDLE_VALUE) {
1140     return 0;
1141   }
1142 
1143   strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1144 
1145   if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1146     if (GetLastError() == ERROR_INVALID_HANDLE) {
1147       errno = EBADF;
1148       return 0;
1149     }
1150     FindClose(dirp->handle);
1151     dirp->handle = INVALID_HANDLE_VALUE;
1152   }
1153 
1154   return &dirp->dirent;
1155 }
1156 
1157 int os::closedir(DIR *dirp) {
1158   assert(dirp != NULL, "just checking");      // hotspot change
1159   if (dirp->handle != INVALID_HANDLE_VALUE) {
1160     if (!FindClose(dirp->handle)) {
1161       errno = EBADF;
1162       return -1;
1163     }
1164     dirp->handle = INVALID_HANDLE_VALUE;
1165   }
1166   free(dirp->path);
1167   free(dirp);
1168   return 0;
1169 }
1170 
1171 // This must be hard coded because it's the system's temporary
1172 // directory not the java application's temp directory, ala java.io.tmpdir.
1173 const char* os::get_temp_directory() {
1174   static char path_buf[MAX_PATH];
1175   if (GetTempPath(MAX_PATH, path_buf) > 0) {
1176     return path_buf;
1177   } else {
1178     path_buf[0] = '\0';
1179     return path_buf;
1180   }
1181 }
1182 
1183 // Needs to be in os specific directory because windows requires another
1184 // header file <direct.h>
1185 const char* os::get_current_directory(char *buf, size_t buflen) {
1186   int n = static_cast<int>(buflen);
1187   if (buflen > INT_MAX)  n = INT_MAX;
1188   return _getcwd(buf, n);
1189 }
1190 
1191 //-----------------------------------------------------------
1192 // Helper functions for fatal error handler
1193 #ifdef _WIN64
1194 // Helper routine which returns true if address in
1195 // within the NTDLL address space.
1196 //
1197 static bool _addr_in_ntdll(address addr) {
1198   HMODULE hmod;
1199   MODULEINFO minfo;
1200 
1201   hmod = GetModuleHandle("NTDLL.DLL");
1202   if (hmod == NULL) return false;
1203   if (!GetModuleInformation(GetCurrentProcess(), hmod,
1204                                           &minfo, sizeof(MODULEINFO))) {
1205     return false;
1206   }
1207 
1208   if ((addr >= minfo.lpBaseOfDll) &&
1209       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1210     return true;
1211   } else {
1212     return false;
1213   }
1214 }
1215 #endif
1216 
1217 struct _modinfo {
1218   address addr;
1219   char*   full_path;   // point to a char buffer
1220   int     buflen;      // size of the buffer
1221   address base_addr;
1222 };
1223 
1224 static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1225                                   address top_address, void * param) {
1226   struct _modinfo *pmod = (struct _modinfo *)param;
1227   if (!pmod) return -1;
1228 
1229   if (base_addr   <= pmod->addr &&
1230       top_address > pmod->addr) {
1231     // if a buffer is provided, copy path name to the buffer
1232     if (pmod->full_path) {
1233       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1234     }
1235     pmod->base_addr = base_addr;
1236     return 1;
1237   }
1238   return 0;
1239 }
1240 
1241 bool os::dll_address_to_library_name(address addr, char* buf,
1242                                      int buflen, int* offset) {
1243   // buf is not optional, but offset is optional
1244   assert(buf != NULL, "sanity check");
1245 
1246 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1247 //       return the full path to the DLL file, sometimes it returns path
1248 //       to the corresponding PDB file (debug info); sometimes it only
1249 //       returns partial path, which makes life painful.
1250 
1251   struct _modinfo mi;
1252   mi.addr      = addr;
1253   mi.full_path = buf;
1254   mi.buflen    = buflen;
1255   if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1256     // buf already contains path name
1257     if (offset) *offset = addr - mi.base_addr;
1258     return true;
1259   }
1260 
1261   buf[0] = '\0';
1262   if (offset) *offset = -1;
1263   return false;
1264 }
1265 
1266 bool os::dll_address_to_function_name(address addr, char *buf,
1267                                       int buflen, int *offset,
1268                                       bool demangle) {
1269   // buf is not optional, but offset is optional
1270   assert(buf != NULL, "sanity check");
1271 
1272   if (Decoder::decode(addr, buf, buflen, offset, demangle)) {
1273     return true;
1274   }
1275   if (offset != NULL)  *offset  = -1;
1276   buf[0] = '\0';
1277   return false;
1278 }
1279 
1280 // save the start and end address of jvm.dll into param[0] and param[1]
1281 static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1282                            address top_address, void * param) {
1283   if (!param) return -1;
1284 
1285   if (base_addr   <= (address)_locate_jvm_dll &&
1286       top_address > (address)_locate_jvm_dll) {
1287     ((address*)param)[0] = base_addr;
1288     ((address*)param)[1] = top_address;
1289     return 1;
1290   }
1291   return 0;
1292 }
1293 
1294 address vm_lib_location[2];    // start and end address of jvm.dll
1295 
1296 // check if addr is inside jvm.dll
1297 bool os::address_is_in_vm(address addr) {
1298   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1299     if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1300       assert(false, "Can't find jvm module.");
1301       return false;
1302     }
1303   }
1304 
1305   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1306 }
1307 
1308 // print module info; param is outputStream*
1309 static int _print_module(const char* fname, address base_address,
1310                          address top_address, void* param) {
1311   if (!param) return -1;
1312 
1313   outputStream* st = (outputStream*)param;
1314 
1315   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1316   return 0;
1317 }
1318 
1319 // Loads .dll/.so and
1320 // in case of error it checks if .dll/.so was built for the
1321 // same architecture as Hotspot is running on
1322 void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1323   void * result = LoadLibrary(name);
1324   if (result != NULL) {
1325     // Recalculate pdb search path if a DLL was loaded successfully.
1326     SymbolEngine::recalc_search_path();
1327     return result;
1328   }
1329 
1330   DWORD errcode = GetLastError();
1331   if (errcode == ERROR_MOD_NOT_FOUND) {
1332     strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1333     ebuf[ebuflen - 1] = '\0';
1334     return NULL;
1335   }
1336 
1337   // Parsing dll below
1338   // If we can read dll-info and find that dll was built
1339   // for an architecture other than Hotspot is running in
1340   // - then print to buffer "DLL was built for a different architecture"
1341   // else call os::lasterror to obtain system error message
1342 
1343   // Read system error message into ebuf
1344   // It may or may not be overwritten below (in the for loop and just above)
1345   lasterror(ebuf, (size_t) ebuflen);
1346   ebuf[ebuflen - 1] = '\0';
1347   int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1348   if (fd < 0) {
1349     return NULL;
1350   }
1351 
1352   uint32_t signature_offset;
1353   uint16_t lib_arch = 0;
1354   bool failed_to_get_lib_arch =
1355     ( // Go to position 3c in the dll
1356      (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1357      ||
1358      // Read location of signature
1359      (sizeof(signature_offset) !=
1360      (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1361      ||
1362      // Go to COFF File Header in dll
1363      // that is located after "signature" (4 bytes long)
1364      (os::seek_to_file_offset(fd,
1365      signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1366      ||
1367      // Read field that contains code of architecture
1368      // that dll was built for
1369      (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1370     );
1371 
1372   ::close(fd);
1373   if (failed_to_get_lib_arch) {
1374     // file i/o error - report os::lasterror(...) msg
1375     return NULL;
1376   }
1377 
1378   typedef struct {
1379     uint16_t arch_code;
1380     char* arch_name;
1381   } arch_t;
1382 
1383   static const arch_t arch_array[] = {
1384     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1385     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"}
1386   };
1387 #if (defined _M_AMD64)
1388   static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1389 #elif (defined _M_IX86)
1390   static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1391 #else
1392   #error Method os::dll_load requires that one of following \
1393          is defined :_M_AMD64 or _M_IX86
1394 #endif
1395 
1396 
1397   // Obtain a string for printf operation
1398   // lib_arch_str shall contain string what platform this .dll was built for
1399   // running_arch_str shall string contain what platform Hotspot was built for
1400   char *running_arch_str = NULL, *lib_arch_str = NULL;
1401   for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1402     if (lib_arch == arch_array[i].arch_code) {
1403       lib_arch_str = arch_array[i].arch_name;
1404     }
1405     if (running_arch == arch_array[i].arch_code) {
1406       running_arch_str = arch_array[i].arch_name;
1407     }
1408   }
1409 
1410   assert(running_arch_str,
1411          "Didn't find running architecture code in arch_array");
1412 
1413   // If the architecture is right
1414   // but some other error took place - report os::lasterror(...) msg
1415   if (lib_arch == running_arch) {
1416     return NULL;
1417   }
1418 
1419   if (lib_arch_str != NULL) {
1420     ::_snprintf(ebuf, ebuflen - 1,
1421                 "Can't load %s-bit .dll on a %s-bit platform",
1422                 lib_arch_str, running_arch_str);
1423   } else {
1424     // don't know what architecture this dll was build for
1425     ::_snprintf(ebuf, ebuflen - 1,
1426                 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1427                 lib_arch, running_arch_str);
1428   }
1429 
1430   return NULL;
1431 }
1432 
1433 void os::print_dll_info(outputStream *st) {
1434   st->print_cr("Dynamic libraries:");
1435   get_loaded_modules_info(_print_module, (void *)st);
1436 }
1437 
1438 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1439   HANDLE   hProcess;
1440 
1441 # define MAX_NUM_MODULES 128
1442   HMODULE     modules[MAX_NUM_MODULES];
1443   static char filename[MAX_PATH];
1444   int         result = 0;
1445 
1446   int pid = os::current_process_id();
1447   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1448                          FALSE, pid);
1449   if (hProcess == NULL) return 0;
1450 
1451   DWORD size_needed;
1452   if (!EnumProcessModules(hProcess, modules, sizeof(modules), &size_needed)) {
1453     CloseHandle(hProcess);
1454     return 0;
1455   }
1456 
1457   // number of modules that are currently loaded
1458   int num_modules = size_needed / sizeof(HMODULE);
1459 
1460   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1461     // Get Full pathname:
1462     if (!GetModuleFileNameEx(hProcess, modules[i], filename, sizeof(filename))) {
1463       filename[0] = '\0';
1464     }
1465 
1466     MODULEINFO modinfo;
1467     if (!GetModuleInformation(hProcess, modules[i], &modinfo, sizeof(modinfo))) {
1468       modinfo.lpBaseOfDll = NULL;
1469       modinfo.SizeOfImage = 0;
1470     }
1471 
1472     // Invoke callback function
1473     result = callback(filename, (address)modinfo.lpBaseOfDll,
1474                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1475     if (result) break;
1476   }
1477 
1478   CloseHandle(hProcess);
1479   return result;
1480 }
1481 
1482 bool os::get_host_name(char* buf, size_t buflen) {
1483   DWORD size = (DWORD)buflen;
1484   return (GetComputerNameEx(ComputerNameDnsHostname, buf, &size) == TRUE);
1485 }
1486 
1487 void os::get_summary_os_info(char* buf, size_t buflen) {
1488   stringStream sst(buf, buflen);
1489   os::win32::print_windows_version(&sst);
1490   // chop off newline character
1491   char* nl = strchr(buf, '\n');
1492   if (nl != NULL) *nl = '\0';
1493 }
1494 
1495 int os::log_vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
1496   int ret = vsnprintf(buf, len, fmt, args);
1497   // Get the correct buffer size if buf is too small
1498   if (ret < 0) {
1499     return _vscprintf(fmt, args);
1500   }
1501   return ret;
1502 }
1503 
1504 static inline time_t get_mtime(const char* filename) {
1505   struct stat st;
1506   int ret = os::stat(filename, &st);
1507   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
1508   return st.st_mtime;
1509 }
1510 
1511 int os::compare_file_modified_times(const char* file1, const char* file2) {
1512   time_t t1 = get_mtime(file1);
1513   time_t t2 = get_mtime(file2);
1514   return t1 - t2;
1515 }
1516 
1517 void os::print_os_info_brief(outputStream* st) {
1518   os::print_os_info(st);
1519 }
1520 
1521 void os::print_os_info(outputStream* st) {
1522 #ifdef ASSERT
1523   char buffer[1024];
1524   st->print("HostName: ");
1525   if (get_host_name(buffer, sizeof(buffer))) {
1526     st->print("%s ", buffer);
1527   } else {
1528     st->print("N/A ");
1529   }
1530 #endif
1531   st->print("OS:");
1532   os::win32::print_windows_version(st);
1533 }
1534 
1535 void os::win32::print_windows_version(outputStream* st) {
1536   OSVERSIONINFOEX osvi;
1537   VS_FIXEDFILEINFO *file_info;
1538   TCHAR kernel32_path[MAX_PATH];
1539   UINT len, ret;
1540 
1541   // Use the GetVersionEx information to see if we're on a server or
1542   // workstation edition of Windows. Starting with Windows 8.1 we can't
1543   // trust the OS version information returned by this API.
1544   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1545   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1546   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1547     st->print_cr("Call to GetVersionEx failed");
1548     return;
1549   }
1550   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1551 
1552   // Get the full path to \Windows\System32\kernel32.dll and use that for
1553   // determining what version of Windows we're running on.
1554   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1555   ret = GetSystemDirectory(kernel32_path, len);
1556   if (ret == 0 || ret > len) {
1557     st->print_cr("Call to GetSystemDirectory failed");
1558     return;
1559   }
1560   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1561 
1562   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1563   if (version_size == 0) {
1564     st->print_cr("Call to GetFileVersionInfoSize failed");
1565     return;
1566   }
1567 
1568   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1569   if (version_info == NULL) {
1570     st->print_cr("Failed to allocate version_info");
1571     return;
1572   }
1573 
1574   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1575     os::free(version_info);
1576     st->print_cr("Call to GetFileVersionInfo failed");
1577     return;
1578   }
1579 
1580   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1581     os::free(version_info);
1582     st->print_cr("Call to VerQueryValue failed");
1583     return;
1584   }
1585 
1586   int major_version = HIWORD(file_info->dwProductVersionMS);
1587   int minor_version = LOWORD(file_info->dwProductVersionMS);
1588   int build_number = HIWORD(file_info->dwProductVersionLS);
1589   int build_minor = LOWORD(file_info->dwProductVersionLS);
1590   int os_vers = major_version * 1000 + minor_version;
1591   os::free(version_info);
1592 
1593   st->print(" Windows ");
1594   switch (os_vers) {
1595 
1596   case 6000:
1597     if (is_workstation) {
1598       st->print("Vista");
1599     } else {
1600       st->print("Server 2008");
1601     }
1602     break;
1603 
1604   case 6001:
1605     if (is_workstation) {
1606       st->print("7");
1607     } else {
1608       st->print("Server 2008 R2");
1609     }
1610     break;
1611 
1612   case 6002:
1613     if (is_workstation) {
1614       st->print("8");
1615     } else {
1616       st->print("Server 2012");
1617     }
1618     break;
1619 
1620   case 6003:
1621     if (is_workstation) {
1622       st->print("8.1");
1623     } else {
1624       st->print("Server 2012 R2");
1625     }
1626     break;
1627 
1628   case 10000:
1629     if (is_workstation) {
1630       st->print("10");
1631     } else {
1632       st->print("Server 2016");
1633     }
1634     break;
1635 
1636   default:
1637     // Unrecognized windows, print out its major and minor versions
1638     st->print("%d.%d", major_version, minor_version);
1639     break;
1640   }
1641 
1642   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1643   // find out whether we are running on 64 bit processor or not
1644   SYSTEM_INFO si;
1645   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1646   GetNativeSystemInfo(&si);
1647   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1648     st->print(" , 64 bit");
1649   }
1650 
1651   st->print(" Build %d", build_number);
1652   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1653   st->cr();
1654 }
1655 
1656 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1657   // Nothing to do for now.
1658 }
1659 
1660 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1661   HKEY key;
1662   DWORD status = RegOpenKey(HKEY_LOCAL_MACHINE,
1663                "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", &key);
1664   if (status == ERROR_SUCCESS) {
1665     DWORD size = (DWORD)buflen;
1666     status = RegQueryValueEx(key, "ProcessorNameString", NULL, NULL, (byte*)buf, &size);
1667     if (status != ERROR_SUCCESS) {
1668         strncpy(buf, "## __CPU__", buflen);
1669     }
1670     RegCloseKey(key);
1671   } else {
1672     // Put generic cpu info to return
1673     strncpy(buf, "## __CPU__", buflen);
1674   }
1675 }
1676 
1677 void os::print_memory_info(outputStream* st) {
1678   st->print("Memory:");
1679   st->print(" %dk page", os::vm_page_size()>>10);
1680 
1681   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1682   // value if total memory is larger than 4GB
1683   MEMORYSTATUSEX ms;
1684   ms.dwLength = sizeof(ms);
1685   GlobalMemoryStatusEx(&ms);
1686 
1687   st->print(", physical %uk", os::physical_memory() >> 10);
1688   st->print("(%uk free)", os::available_memory() >> 10);
1689 
1690   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1691   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1692   st->cr();
1693 }
1694 
1695 void os::print_siginfo(outputStream *st, const void* siginfo) {
1696   const EXCEPTION_RECORD* const er = (EXCEPTION_RECORD*)siginfo;
1697   st->print("siginfo:");
1698 
1699   char tmp[64];
1700   if (os::exception_name(er->ExceptionCode, tmp, sizeof(tmp)) == NULL) {
1701     strcpy(tmp, "EXCEPTION_??");
1702   }
1703   st->print(" %s (0x%x)", tmp, er->ExceptionCode);
1704 
1705   if ((er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION ||
1706        er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR) &&
1707        er->NumberParameters >= 2) {
1708     switch (er->ExceptionInformation[0]) {
1709     case 0: st->print(", reading address"); break;
1710     case 1: st->print(", writing address"); break;
1711     case 8: st->print(", data execution prevention violation at address"); break;
1712     default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1713                        er->ExceptionInformation[0]);
1714     }
1715     st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1716   } else {
1717     int num = er->NumberParameters;
1718     if (num > 0) {
1719       st->print(", ExceptionInformation=");
1720       for (int i = 0; i < num; i++) {
1721         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1722       }
1723     }
1724   }
1725   st->cr();
1726 }
1727 
1728 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1729   // do nothing
1730 }
1731 
1732 static char saved_jvm_path[MAX_PATH] = {0};
1733 
1734 // Find the full path to the current module, jvm.dll
1735 void os::jvm_path(char *buf, jint buflen) {
1736   // Error checking.
1737   if (buflen < MAX_PATH) {
1738     assert(false, "must use a large-enough buffer");
1739     buf[0] = '\0';
1740     return;
1741   }
1742   // Lazy resolve the path to current module.
1743   if (saved_jvm_path[0] != 0) {
1744     strcpy(buf, saved_jvm_path);
1745     return;
1746   }
1747 
1748   buf[0] = '\0';
1749   if (Arguments::sun_java_launcher_is_altjvm()) {
1750     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1751     // for a JAVA_HOME environment variable and fix up the path so it
1752     // looks like jvm.dll is installed there (append a fake suffix
1753     // hotspot/jvm.dll).
1754     char* java_home_var = ::getenv("JAVA_HOME");
1755     if (java_home_var != NULL && java_home_var[0] != 0 &&
1756         strlen(java_home_var) < (size_t)buflen) {
1757       strncpy(buf, java_home_var, buflen);
1758 
1759       // determine if this is a legacy image or modules image
1760       // modules image doesn't have "jre" subdirectory
1761       size_t len = strlen(buf);
1762       char* jrebin_p = buf + len;
1763       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1764       if (0 != _access(buf, 0)) {
1765         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1766       }
1767       len = strlen(buf);
1768       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1769     }
1770   }
1771 
1772   if (buf[0] == '\0') {
1773     GetModuleFileName(vm_lib_handle, buf, buflen);
1774   }
1775   strncpy(saved_jvm_path, buf, MAX_PATH);
1776   saved_jvm_path[MAX_PATH - 1] = '\0';
1777 }
1778 
1779 
1780 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1781 #ifndef _WIN64
1782   st->print("_");
1783 #endif
1784 }
1785 
1786 
1787 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1788 #ifndef _WIN64
1789   st->print("@%d", args_size  * sizeof(int));
1790 #endif
1791 }
1792 
1793 // This method is a copy of JDK's sysGetLastErrorString
1794 // from src/windows/hpi/src/system_md.c
1795 
1796 size_t os::lasterror(char* buf, size_t len) {
1797   DWORD errval;
1798 
1799   if ((errval = GetLastError()) != 0) {
1800     // DOS error
1801     size_t n = (size_t)FormatMessage(
1802                                      FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1803                                      NULL,
1804                                      errval,
1805                                      0,
1806                                      buf,
1807                                      (DWORD)len,
1808                                      NULL);
1809     if (n > 3) {
1810       // Drop final '.', CR, LF
1811       if (buf[n - 1] == '\n') n--;
1812       if (buf[n - 1] == '\r') n--;
1813       if (buf[n - 1] == '.') n--;
1814       buf[n] = '\0';
1815     }
1816     return n;
1817   }
1818 
1819   if (errno != 0) {
1820     // C runtime error that has no corresponding DOS error code
1821     const char* s = os::strerror(errno);
1822     size_t n = strlen(s);
1823     if (n >= len) n = len - 1;
1824     strncpy(buf, s, n);
1825     buf[n] = '\0';
1826     return n;
1827   }
1828 
1829   return 0;
1830 }
1831 
1832 int os::get_last_error() {
1833   DWORD error = GetLastError();
1834   if (error == 0) {
1835     error = errno;
1836   }
1837   return (int)error;
1838 }
1839 
1840 WindowsSemaphore::WindowsSemaphore(uint value) {
1841   _semaphore = ::CreateSemaphore(NULL, value, LONG_MAX, NULL);
1842 
1843   guarantee(_semaphore != NULL, "CreateSemaphore failed with error code: %lu", GetLastError());
1844 }
1845 
1846 WindowsSemaphore::~WindowsSemaphore() {
1847   ::CloseHandle(_semaphore);
1848 }
1849 
1850 void WindowsSemaphore::signal(uint count) {
1851   if (count > 0) {
1852     BOOL ret = ::ReleaseSemaphore(_semaphore, count, NULL);
1853 
1854     assert(ret != 0, "ReleaseSemaphore failed with error code: %lu", GetLastError());
1855   }
1856 }
1857 
1858 void WindowsSemaphore::wait() {
1859   DWORD ret = ::WaitForSingleObject(_semaphore, INFINITE);
1860   assert(ret != WAIT_FAILED,   "WaitForSingleObject failed with error code: %lu", GetLastError());
1861   assert(ret == WAIT_OBJECT_0, "WaitForSingleObject failed with return value: %lu", ret);
1862 }
1863 
1864 bool WindowsSemaphore::trywait() {
1865   DWORD ret = ::WaitForSingleObject(_semaphore, 0);
1866   assert(ret != WAIT_FAILED,   "WaitForSingleObject failed with error code: %lu", GetLastError());
1867   return ret == WAIT_OBJECT_0;
1868 }
1869 
1870 // sun.misc.Signal
1871 // NOTE that this is a workaround for an apparent kernel bug where if
1872 // a signal handler for SIGBREAK is installed then that signal handler
1873 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1874 // See bug 4416763.
1875 static void (*sigbreakHandler)(int) = NULL;
1876 
1877 static void UserHandler(int sig, void *siginfo, void *context) {
1878   os::signal_notify(sig);
1879   // We need to reinstate the signal handler each time...
1880   os::signal(sig, (void*)UserHandler);
1881 }
1882 
1883 void* os::user_handler() {
1884   return (void*) UserHandler;
1885 }
1886 
1887 void* os::signal(int signal_number, void* handler) {
1888   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1889     void (*oldHandler)(int) = sigbreakHandler;
1890     sigbreakHandler = (void (*)(int)) handler;
1891     return (void*) oldHandler;
1892   } else {
1893     return (void*)::signal(signal_number, (void (*)(int))handler);
1894   }
1895 }
1896 
1897 void os::signal_raise(int signal_number) {
1898   raise(signal_number);
1899 }
1900 
1901 // The Win32 C runtime library maps all console control events other than ^C
1902 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1903 // logoff, and shutdown events.  We therefore install our own console handler
1904 // that raises SIGTERM for the latter cases.
1905 //
1906 static BOOL WINAPI consoleHandler(DWORD event) {
1907   switch (event) {
1908   case CTRL_C_EVENT:
1909     if (VMError::is_error_reported()) {
1910       // Ctrl-C is pressed during error reporting, likely because the error
1911       // handler fails to abort. Let VM die immediately.
1912       os::die();
1913     }
1914 
1915     os::signal_raise(SIGINT);
1916     return TRUE;
1917     break;
1918   case CTRL_BREAK_EVENT:
1919     if (sigbreakHandler != NULL) {
1920       (*sigbreakHandler)(SIGBREAK);
1921     }
1922     return TRUE;
1923     break;
1924   case CTRL_LOGOFF_EVENT: {
1925     // Don't terminate JVM if it is running in a non-interactive session,
1926     // such as a service process.
1927     USEROBJECTFLAGS flags;
1928     HANDLE handle = GetProcessWindowStation();
1929     if (handle != NULL &&
1930         GetUserObjectInformation(handle, UOI_FLAGS, &flags,
1931         sizeof(USEROBJECTFLAGS), NULL)) {
1932       // If it is a non-interactive session, let next handler to deal
1933       // with it.
1934       if ((flags.dwFlags & WSF_VISIBLE) == 0) {
1935         return FALSE;
1936       }
1937     }
1938   }
1939   case CTRL_CLOSE_EVENT:
1940   case CTRL_SHUTDOWN_EVENT:
1941     os::signal_raise(SIGTERM);
1942     return TRUE;
1943     break;
1944   default:
1945     break;
1946   }
1947   return FALSE;
1948 }
1949 
1950 // The following code is moved from os.cpp for making this
1951 // code platform specific, which it is by its very nature.
1952 
1953 // Return maximum OS signal used + 1 for internal use only
1954 // Used as exit signal for signal_thread
1955 int os::sigexitnum_pd() {
1956   return NSIG;
1957 }
1958 
1959 // a counter for each possible signal value, including signal_thread exit signal
1960 static volatile jint pending_signals[NSIG+1] = { 0 };
1961 static HANDLE sig_sem = NULL;
1962 
1963 void os::signal_init_pd() {
1964   // Initialize signal structures
1965   memset((void*)pending_signals, 0, sizeof(pending_signals));
1966 
1967   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
1968 
1969   // Programs embedding the VM do not want it to attempt to receive
1970   // events like CTRL_LOGOFF_EVENT, which are used to implement the
1971   // shutdown hooks mechanism introduced in 1.3.  For example, when
1972   // the VM is run as part of a Windows NT service (i.e., a servlet
1973   // engine in a web server), the correct behavior is for any console
1974   // control handler to return FALSE, not TRUE, because the OS's
1975   // "final" handler for such events allows the process to continue if
1976   // it is a service (while terminating it if it is not a service).
1977   // To make this behavior uniform and the mechanism simpler, we
1978   // completely disable the VM's usage of these console events if -Xrs
1979   // (=ReduceSignalUsage) is specified.  This means, for example, that
1980   // the CTRL-BREAK thread dump mechanism is also disabled in this
1981   // case.  See bugs 4323062, 4345157, and related bugs.
1982 
1983   if (!ReduceSignalUsage) {
1984     // Add a CTRL-C handler
1985     SetConsoleCtrlHandler(consoleHandler, TRUE);
1986   }
1987 }
1988 
1989 void os::signal_notify(int signal_number) {
1990   BOOL ret;
1991   if (sig_sem != NULL) {
1992     Atomic::inc(&pending_signals[signal_number]);
1993     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1994     assert(ret != 0, "ReleaseSemaphore() failed");
1995   }
1996 }
1997 
1998 static int check_pending_signals(bool wait_for_signal) {
1999   DWORD ret;
2000   while (true) {
2001     for (int i = 0; i < NSIG + 1; i++) {
2002       jint n = pending_signals[i];
2003       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2004         return i;
2005       }
2006     }
2007     if (!wait_for_signal) {
2008       return -1;
2009     }
2010 
2011     JavaThread *thread = JavaThread::current();
2012 
2013     ThreadBlockInVM tbivm(thread);
2014 
2015     bool threadIsSuspended;
2016     do {
2017       thread->set_suspend_equivalent();
2018       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2019       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2020       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2021 
2022       // were we externally suspended while we were waiting?
2023       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2024       if (threadIsSuspended) {
2025         // The semaphore has been incremented, but while we were waiting
2026         // another thread suspended us. We don't want to continue running
2027         // while suspended because that would surprise the thread that
2028         // suspended us.
2029         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2030         assert(ret != 0, "ReleaseSemaphore() failed");
2031 
2032         thread->java_suspend_self();
2033       }
2034     } while (threadIsSuspended);
2035   }
2036 }
2037 
2038 int os::signal_lookup() {
2039   return check_pending_signals(false);
2040 }
2041 
2042 int os::signal_wait() {
2043   return check_pending_signals(true);
2044 }
2045 
2046 // Implicit OS exception handling
2047 
2048 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2049                       address handler) {
2050   JavaThread* thread = (JavaThread*) Thread::current_or_null();
2051   // Save pc in thread
2052 #ifdef _M_AMD64
2053   // Do not blow up if no thread info available.
2054   if (thread) {
2055     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2056   }
2057   // Set pc to handler
2058   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2059 #else
2060   // Do not blow up if no thread info available.
2061   if (thread) {
2062     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2063   }
2064   // Set pc to handler
2065   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2066 #endif
2067 
2068   // Continue the execution
2069   return EXCEPTION_CONTINUE_EXECUTION;
2070 }
2071 
2072 
2073 // Used for PostMortemDump
2074 extern "C" void safepoints();
2075 extern "C" void find(int x);
2076 extern "C" void events();
2077 
2078 // According to Windows API documentation, an illegal instruction sequence should generate
2079 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2080 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2081 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2082 
2083 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2084 
2085 // From "Execution Protection in the Windows Operating System" draft 0.35
2086 // Once a system header becomes available, the "real" define should be
2087 // included or copied here.
2088 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2089 
2090 // Windows Vista/2008 heap corruption check
2091 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2092 
2093 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2094 // C++ compiler contain this error code. Because this is a compiler-generated
2095 // error, the code is not listed in the Win32 API header files.
2096 // The code is actually a cryptic mnemonic device, with the initial "E"
2097 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2098 // ASCII values of "msc".
2099 
2100 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2101 
2102 #define def_excpt(val) { #val, (val) }
2103 
2104 static const struct { char* name; uint number; } exceptlabels[] = {
2105     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2106     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2107     def_excpt(EXCEPTION_BREAKPOINT),
2108     def_excpt(EXCEPTION_SINGLE_STEP),
2109     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2110     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2111     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2112     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2113     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2114     def_excpt(EXCEPTION_FLT_OVERFLOW),
2115     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2116     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2117     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2118     def_excpt(EXCEPTION_INT_OVERFLOW),
2119     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2120     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2121     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2122     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2123     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2124     def_excpt(EXCEPTION_STACK_OVERFLOW),
2125     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2126     def_excpt(EXCEPTION_GUARD_PAGE),
2127     def_excpt(EXCEPTION_INVALID_HANDLE),
2128     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2129     def_excpt(EXCEPTION_HEAP_CORRUPTION)
2130 };
2131 
2132 #undef def_excpt
2133 
2134 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2135   uint code = static_cast<uint>(exception_code);
2136   for (uint i = 0; i < ARRAY_SIZE(exceptlabels); ++i) {
2137     if (exceptlabels[i].number == code) {
2138       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2139       return buf;
2140     }
2141   }
2142 
2143   return NULL;
2144 }
2145 
2146 //-----------------------------------------------------------------------------
2147 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2148   // handle exception caused by idiv; should only happen for -MinInt/-1
2149   // (division by zero is handled explicitly)
2150 #ifdef  _M_AMD64
2151   PCONTEXT ctx = exceptionInfo->ContextRecord;
2152   address pc = (address)ctx->Rip;
2153   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && pc[1] == 0xF7 || pc[0] == 0xF7, "not an idiv opcode");
2154   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && (pc[2] & ~0x7) == 0xF8 || (pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2155   if (pc[0] == 0xF7) {
2156     // set correct result values and continue after idiv instruction
2157     ctx->Rip = (DWORD64)pc + 2;        // idiv reg, reg  is 2 bytes
2158   } else {
2159     ctx->Rip = (DWORD64)pc + 3;        // REX idiv reg, reg  is 3 bytes
2160   }
2161   // Do not set ctx->Rax as it already contains the correct value (either 32 or 64 bit, depending on the operation)
2162   // this is the case because the exception only happens for -MinValue/-1 and -MinValue is always in rax because of the
2163   // idiv opcode (0xF7).
2164   ctx->Rdx = (DWORD)0;             // remainder
2165   // Continue the execution
2166 #else
2167   PCONTEXT ctx = exceptionInfo->ContextRecord;
2168   address pc = (address)ctx->Eip;
2169   assert(pc[0] == 0xF7, "not an idiv opcode");
2170   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2171   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2172   // set correct result values and continue after idiv instruction
2173   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2174   ctx->Eax = (DWORD)min_jint;      // result
2175   ctx->Edx = (DWORD)0;             // remainder
2176   // Continue the execution
2177 #endif
2178   return EXCEPTION_CONTINUE_EXECUTION;
2179 }
2180 
2181 //-----------------------------------------------------------------------------
2182 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2183   PCONTEXT ctx = exceptionInfo->ContextRecord;
2184 #ifndef  _WIN64
2185   // handle exception caused by native method modifying control word
2186   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2187 
2188   switch (exception_code) {
2189   case EXCEPTION_FLT_DENORMAL_OPERAND:
2190   case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2191   case EXCEPTION_FLT_INEXACT_RESULT:
2192   case EXCEPTION_FLT_INVALID_OPERATION:
2193   case EXCEPTION_FLT_OVERFLOW:
2194   case EXCEPTION_FLT_STACK_CHECK:
2195   case EXCEPTION_FLT_UNDERFLOW:
2196     jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2197     if (fp_control_word != ctx->FloatSave.ControlWord) {
2198       // Restore FPCW and mask out FLT exceptions
2199       ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2200       // Mask out pending FLT exceptions
2201       ctx->FloatSave.StatusWord &=  0xffffff00;
2202       return EXCEPTION_CONTINUE_EXECUTION;
2203     }
2204   }
2205 
2206   if (prev_uef_handler != NULL) {
2207     // We didn't handle this exception so pass it to the previous
2208     // UnhandledExceptionFilter.
2209     return (prev_uef_handler)(exceptionInfo);
2210   }
2211 #else // !_WIN64
2212   // On Windows, the mxcsr control bits are non-volatile across calls
2213   // See also CR 6192333
2214   //
2215   jint MxCsr = INITIAL_MXCSR;
2216   // we can't use StubRoutines::addr_mxcsr_std()
2217   // because in Win64 mxcsr is not saved there
2218   if (MxCsr != ctx->MxCsr) {
2219     ctx->MxCsr = MxCsr;
2220     return EXCEPTION_CONTINUE_EXECUTION;
2221   }
2222 #endif // !_WIN64
2223 
2224   return EXCEPTION_CONTINUE_SEARCH;
2225 }
2226 
2227 static inline void report_error(Thread* t, DWORD exception_code,
2228                                 address addr, void* siginfo, void* context) {
2229   VMError::report_and_die(t, exception_code, addr, siginfo, context);
2230 
2231   // If UseOsErrorReporting, this will return here and save the error file
2232   // somewhere where we can find it in the minidump.
2233 }
2234 
2235 bool os::win32::get_frame_at_stack_banging_point(JavaThread* thread,
2236         struct _EXCEPTION_POINTERS* exceptionInfo, address pc, frame* fr) {
2237   PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2238   address addr = (address) exceptionRecord->ExceptionInformation[1];
2239   if (Interpreter::contains(pc)) {
2240     *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2241     if (!fr->is_first_java_frame()) {
2242       // get_frame_at_stack_banging_point() is only called when we
2243       // have well defined stacks so java_sender() calls do not need
2244       // to assert safe_for_sender() first.
2245       *fr = fr->java_sender();
2246     }
2247   } else {
2248     // more complex code with compiled code
2249     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
2250     CodeBlob* cb = CodeCache::find_blob(pc);
2251     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
2252       // Not sure where the pc points to, fallback to default
2253       // stack overflow handling
2254       return false;
2255     } else {
2256       *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2257       // in compiled code, the stack banging is performed just after the return pc
2258       // has been pushed on the stack
2259       *fr = frame(fr->sp() + 1, fr->fp(), (address)*(fr->sp()));
2260       if (!fr->is_java_frame()) {
2261         // See java_sender() comment above.
2262         *fr = fr->java_sender();
2263       }
2264     }
2265   }
2266   assert(fr->is_java_frame(), "Safety check");
2267   return true;
2268 }
2269 
2270 //-----------------------------------------------------------------------------
2271 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2272   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2273   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2274 #ifdef _M_AMD64
2275   address pc = (address) exceptionInfo->ContextRecord->Rip;
2276 #else
2277   address pc = (address) exceptionInfo->ContextRecord->Eip;
2278 #endif
2279   Thread* t = Thread::current_or_null_safe();
2280 
2281   // Handle SafeFetch32 and SafeFetchN exceptions.
2282   if (StubRoutines::is_safefetch_fault(pc)) {
2283     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2284   }
2285 
2286 #ifndef _WIN64
2287   // Execution protection violation - win32 running on AMD64 only
2288   // Handled first to avoid misdiagnosis as a "normal" access violation;
2289   // This is safe to do because we have a new/unique ExceptionInformation
2290   // code for this condition.
2291   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2292     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2293     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2294     address addr = (address) exceptionRecord->ExceptionInformation[1];
2295 
2296     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2297       int page_size = os::vm_page_size();
2298 
2299       // Make sure the pc and the faulting address are sane.
2300       //
2301       // If an instruction spans a page boundary, and the page containing
2302       // the beginning of the instruction is executable but the following
2303       // page is not, the pc and the faulting address might be slightly
2304       // different - we still want to unguard the 2nd page in this case.
2305       //
2306       // 15 bytes seems to be a (very) safe value for max instruction size.
2307       bool pc_is_near_addr =
2308         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2309       bool instr_spans_page_boundary =
2310         (align_down((intptr_t) pc ^ (intptr_t) addr,
2311                          (intptr_t) page_size) > 0);
2312 
2313       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2314         static volatile address last_addr =
2315           (address) os::non_memory_address_word();
2316 
2317         // In conservative mode, don't unguard unless the address is in the VM
2318         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2319             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2320 
2321           // Set memory to RWX and retry
2322           address page_start = align_down(addr, page_size);
2323           bool res = os::protect_memory((char*) page_start, page_size,
2324                                         os::MEM_PROT_RWX);
2325 
2326           log_debug(os)("Execution protection violation "
2327                         "at " INTPTR_FORMAT
2328                         ", unguarding " INTPTR_FORMAT ": %s", p2i(addr),
2329                         p2i(page_start), (res ? "success" : os::strerror(errno)));
2330 
2331           // Set last_addr so if we fault again at the same address, we don't
2332           // end up in an endless loop.
2333           //
2334           // There are two potential complications here.  Two threads trapping
2335           // at the same address at the same time could cause one of the
2336           // threads to think it already unguarded, and abort the VM.  Likely
2337           // very rare.
2338           //
2339           // The other race involves two threads alternately trapping at
2340           // different addresses and failing to unguard the page, resulting in
2341           // an endless loop.  This condition is probably even more unlikely
2342           // than the first.
2343           //
2344           // Although both cases could be avoided by using locks or thread
2345           // local last_addr, these solutions are unnecessary complication:
2346           // this handler is a best-effort safety net, not a complete solution.
2347           // It is disabled by default and should only be used as a workaround
2348           // in case we missed any no-execute-unsafe VM code.
2349 
2350           last_addr = addr;
2351 
2352           return EXCEPTION_CONTINUE_EXECUTION;
2353         }
2354       }
2355 
2356       // Last unguard failed or not unguarding
2357       tty->print_raw_cr("Execution protection violation");
2358       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2359                    exceptionInfo->ContextRecord);
2360       return EXCEPTION_CONTINUE_SEARCH;
2361     }
2362   }
2363 #endif // _WIN64
2364 
2365   // Check to see if we caught the safepoint code in the
2366   // process of write protecting the memory serialization page.
2367   // It write enables the page immediately after protecting it
2368   // so just return.
2369   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2370     if (t != NULL && t->is_Java_thread()) {
2371       JavaThread* thread = (JavaThread*) t;
2372       PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2373       address addr = (address) exceptionRecord->ExceptionInformation[1];
2374       if (os::is_memory_serialize_page(thread, addr)) {
2375         // Block current thread until the memory serialize page permission restored.
2376         os::block_on_serialize_page_trap();
2377         return EXCEPTION_CONTINUE_EXECUTION;
2378       }
2379     }
2380   }
2381 
2382   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2383       VM_Version::is_cpuinfo_segv_addr(pc)) {
2384     // Verify that OS save/restore AVX registers.
2385     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2386   }
2387 
2388   if (t != NULL && t->is_Java_thread()) {
2389     JavaThread* thread = (JavaThread*) t;
2390     bool in_java = thread->thread_state() == _thread_in_Java;
2391 
2392     // Handle potential stack overflows up front.
2393     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2394       if (thread->stack_guards_enabled()) {
2395         if (in_java) {
2396           frame fr;
2397           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2398           address addr = (address) exceptionRecord->ExceptionInformation[1];
2399           if (os::win32::get_frame_at_stack_banging_point(thread, exceptionInfo, pc, &fr)) {
2400             assert(fr.is_java_frame(), "Must be a Java frame");
2401             SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
2402           }
2403         }
2404         // Yellow zone violation.  The o/s has unprotected the first yellow
2405         // zone page for us.  Note:  must call disable_stack_yellow_zone to
2406         // update the enabled status, even if the zone contains only one page.
2407         assert(thread->thread_state() != _thread_in_vm, "Undersized StackShadowPages");
2408         thread->disable_stack_yellow_reserved_zone();
2409         // If not in java code, return and hope for the best.
2410         return in_java
2411             ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2412             :  EXCEPTION_CONTINUE_EXECUTION;
2413       } else {
2414         // Fatal red zone violation.
2415         thread->disable_stack_red_zone();
2416         tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2417         report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2418                       exceptionInfo->ContextRecord);
2419         return EXCEPTION_CONTINUE_SEARCH;
2420       }
2421     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2422       // Either stack overflow or null pointer exception.
2423       if (in_java) {
2424         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2425         address addr = (address) exceptionRecord->ExceptionInformation[1];
2426         address stack_end = thread->stack_end();
2427         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2428           // Stack overflow.
2429           assert(!os::uses_stack_guard_pages(),
2430                  "should be caught by red zone code above.");
2431           return Handle_Exception(exceptionInfo,
2432                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2433         }
2434         // Check for safepoint polling and implicit null
2435         // We only expect null pointers in the stubs (vtable)
2436         // the rest are checked explicitly now.
2437         CodeBlob* cb = CodeCache::find_blob(pc);
2438         if (cb != NULL) {
2439           if (os::is_poll_address(addr)) {
2440             address stub = SharedRuntime::get_poll_stub(pc);
2441             return Handle_Exception(exceptionInfo, stub);
2442           }
2443         }
2444         {
2445 #ifdef _WIN64
2446           // If it's a legal stack address map the entire region in
2447           //
2448           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2449           address addr = (address) exceptionRecord->ExceptionInformation[1];
2450           if (addr > thread->stack_reserved_zone_base() && addr < thread->stack_base()) {
2451             addr = (address)((uintptr_t)addr &
2452                              (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2453             os::commit_memory((char *)addr, thread->stack_base() - addr,
2454                               !ExecMem);
2455             return EXCEPTION_CONTINUE_EXECUTION;
2456           } else
2457 #endif
2458           {
2459             // Null pointer exception.
2460             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr)) {
2461               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2462               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2463             }
2464             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2465                          exceptionInfo->ContextRecord);
2466             return EXCEPTION_CONTINUE_SEARCH;
2467           }
2468         }
2469       }
2470 
2471 #ifdef _WIN64
2472       // Special care for fast JNI field accessors.
2473       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2474       // in and the heap gets shrunk before the field access.
2475       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2476         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2477         if (addr != (address)-1) {
2478           return Handle_Exception(exceptionInfo, addr);
2479         }
2480       }
2481 #endif
2482 
2483       // Stack overflow or null pointer exception in native code.
2484       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2485                    exceptionInfo->ContextRecord);
2486       return EXCEPTION_CONTINUE_SEARCH;
2487     } // /EXCEPTION_ACCESS_VIOLATION
2488     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2489 
2490     if (exception_code == EXCEPTION_IN_PAGE_ERROR) {
2491       CompiledMethod* nm = NULL;
2492       JavaThread* thread = (JavaThread*)t;
2493       if (in_java) {
2494         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
2495         nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
2496       }
2497       if ((thread->thread_state() == _thread_in_vm &&
2498           thread->doing_unsafe_access()) ||
2499           (nm != NULL && nm->has_unsafe_access())) {
2500         return Handle_Exception(exceptionInfo, SharedRuntime::handle_unsafe_access(thread, (address)Assembler::locate_next_instruction(pc)));
2501       }
2502     }
2503 
2504     if (in_java) {
2505       switch (exception_code) {
2506       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2507         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2508 
2509       case EXCEPTION_INT_OVERFLOW:
2510         return Handle_IDiv_Exception(exceptionInfo);
2511 
2512       } // switch
2513     }
2514     if (((thread->thread_state() == _thread_in_Java) ||
2515          (thread->thread_state() == _thread_in_native)) &&
2516          exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2517       LONG result=Handle_FLT_Exception(exceptionInfo);
2518       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2519     }
2520   }
2521 
2522   if (exception_code != EXCEPTION_BREAKPOINT) {
2523     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2524                  exceptionInfo->ContextRecord);
2525   }
2526   return EXCEPTION_CONTINUE_SEARCH;
2527 }
2528 
2529 #ifndef _WIN64
2530 // Special care for fast JNI accessors.
2531 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2532 // the heap gets shrunk before the field access.
2533 // Need to install our own structured exception handler since native code may
2534 // install its own.
2535 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2536   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2537   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2538     address pc = (address) exceptionInfo->ContextRecord->Eip;
2539     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2540     if (addr != (address)-1) {
2541       return Handle_Exception(exceptionInfo, addr);
2542     }
2543   }
2544   return EXCEPTION_CONTINUE_SEARCH;
2545 }
2546 
2547 #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2548   Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2549                                                      jobject obj,           \
2550                                                      jfieldID fieldID) {    \
2551     __try {                                                                 \
2552       return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2553                                                                  obj,       \
2554                                                                  fieldID);  \
2555     } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2556                                               _exception_info())) {         \
2557     }                                                                       \
2558     return 0;                                                               \
2559   }
2560 
2561 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2562 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2563 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2564 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2565 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2566 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2567 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2568 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2569 
2570 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2571   switch (type) {
2572   case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2573   case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2574   case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2575   case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2576   case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2577   case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2578   case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2579   case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2580   default:        ShouldNotReachHere();
2581   }
2582   return (address)-1;
2583 }
2584 #endif
2585 
2586 // Virtual Memory
2587 
2588 int os::vm_page_size() { return os::win32::vm_page_size(); }
2589 int os::vm_allocation_granularity() {
2590   return os::win32::vm_allocation_granularity();
2591 }
2592 
2593 // Windows large page support is available on Windows 2003. In order to use
2594 // large page memory, the administrator must first assign additional privilege
2595 // to the user:
2596 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2597 //   + select Local Policies -> User Rights Assignment
2598 //   + double click "Lock pages in memory", add users and/or groups
2599 //   + reboot
2600 // Note the above steps are needed for administrator as well, as administrators
2601 // by default do not have the privilege to lock pages in memory.
2602 //
2603 // Note about Windows 2003: although the API supports committing large page
2604 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2605 // scenario, I found through experiment it only uses large page if the entire
2606 // memory region is reserved and committed in a single VirtualAlloc() call.
2607 // This makes Windows large page support more or less like Solaris ISM, in
2608 // that the entire heap must be committed upfront. This probably will change
2609 // in the future, if so the code below needs to be revisited.
2610 
2611 #ifndef MEM_LARGE_PAGES
2612   #define MEM_LARGE_PAGES 0x20000000
2613 #endif
2614 
2615 static HANDLE    _hProcess;
2616 static HANDLE    _hToken;
2617 
2618 // Container for NUMA node list info
2619 class NUMANodeListHolder {
2620  private:
2621   int *_numa_used_node_list;  // allocated below
2622   int _numa_used_node_count;
2623 
2624   void free_node_list() {
2625     if (_numa_used_node_list != NULL) {
2626       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2627     }
2628   }
2629 
2630  public:
2631   NUMANodeListHolder() {
2632     _numa_used_node_count = 0;
2633     _numa_used_node_list = NULL;
2634     // do rest of initialization in build routine (after function pointers are set up)
2635   }
2636 
2637   ~NUMANodeListHolder() {
2638     free_node_list();
2639   }
2640 
2641   bool build() {
2642     DWORD_PTR proc_aff_mask;
2643     DWORD_PTR sys_aff_mask;
2644     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2645     ULONG highest_node_number;
2646     if (!GetNumaHighestNodeNumber(&highest_node_number)) return false;
2647     free_node_list();
2648     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2649     for (unsigned int i = 0; i <= highest_node_number; i++) {
2650       ULONGLONG proc_mask_numa_node;
2651       if (!GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2652       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2653         _numa_used_node_list[_numa_used_node_count++] = i;
2654       }
2655     }
2656     return (_numa_used_node_count > 1);
2657   }
2658 
2659   int get_count() { return _numa_used_node_count; }
2660   int get_node_list_entry(int n) {
2661     // for indexes out of range, returns -1
2662     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2663   }
2664 
2665 } numa_node_list_holder;
2666 
2667 
2668 
2669 static size_t _large_page_size = 0;
2670 
2671 static bool request_lock_memory_privilege() {
2672   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2673                           os::current_process_id());
2674 
2675   LUID luid;
2676   if (_hProcess != NULL &&
2677       OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2678       LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2679 
2680     TOKEN_PRIVILEGES tp;
2681     tp.PrivilegeCount = 1;
2682     tp.Privileges[0].Luid = luid;
2683     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2684 
2685     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2686     // privilege. Check GetLastError() too. See MSDN document.
2687     if (AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2688         (GetLastError() == ERROR_SUCCESS)) {
2689       return true;
2690     }
2691   }
2692 
2693   return false;
2694 }
2695 
2696 static void cleanup_after_large_page_init() {
2697   if (_hProcess) CloseHandle(_hProcess);
2698   _hProcess = NULL;
2699   if (_hToken) CloseHandle(_hToken);
2700   _hToken = NULL;
2701 }
2702 
2703 static bool numa_interleaving_init() {
2704   bool success = false;
2705   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2706 
2707   // print a warning if UseNUMAInterleaving flag is specified on command line
2708   bool warn_on_failure = use_numa_interleaving_specified;
2709 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2710 
2711   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2712   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2713   NUMAInterleaveGranularity = align_up(NUMAInterleaveGranularity, min_interleave_granularity);
2714 
2715   if (numa_node_list_holder.build()) {
2716     if (log_is_enabled(Debug, os, cpu)) {
2717       Log(os, cpu) log;
2718       log.debug("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2719       for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2720         log.debug("  %d ", numa_node_list_holder.get_node_list_entry(i));
2721       }
2722     }
2723     success = true;
2724   } else {
2725     WARN("Process does not cover multiple NUMA nodes.");
2726   }
2727   if (!success) {
2728     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2729   }
2730   return success;
2731 #undef WARN
2732 }
2733 
2734 // this routine is used whenever we need to reserve a contiguous VA range
2735 // but we need to make separate VirtualAlloc calls for each piece of the range
2736 // Reasons for doing this:
2737 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2738 //  * UseNUMAInterleaving requires a separate node for each piece
2739 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2740                                          DWORD prot,
2741                                          bool should_inject_error = false) {
2742   char * p_buf;
2743   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2744   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2745   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2746 
2747   // first reserve enough address space in advance since we want to be
2748   // able to break a single contiguous virtual address range into multiple
2749   // large page commits but WS2003 does not allow reserving large page space
2750   // so we just use 4K pages for reserve, this gives us a legal contiguous
2751   // address space. then we will deallocate that reservation, and re alloc
2752   // using large pages
2753   const size_t size_of_reserve = bytes + chunk_size;
2754   if (bytes > size_of_reserve) {
2755     // Overflowed.
2756     return NULL;
2757   }
2758   p_buf = (char *) VirtualAlloc(addr,
2759                                 size_of_reserve,  // size of Reserve
2760                                 MEM_RESERVE,
2761                                 PAGE_READWRITE);
2762   // If reservation failed, return NULL
2763   if (p_buf == NULL) return NULL;
2764   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2765   os::release_memory(p_buf, bytes + chunk_size);
2766 
2767   // we still need to round up to a page boundary (in case we are using large pages)
2768   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2769   // instead we handle this in the bytes_to_rq computation below
2770   p_buf = align_up(p_buf, page_size);
2771 
2772   // now go through and allocate one chunk at a time until all bytes are
2773   // allocated
2774   size_t  bytes_remaining = bytes;
2775   // An overflow of align_up() would have been caught above
2776   // in the calculation of size_of_reserve.
2777   char * next_alloc_addr = p_buf;
2778   HANDLE hProc = GetCurrentProcess();
2779 
2780 #ifdef ASSERT
2781   // Variable for the failure injection
2782   int ran_num = os::random();
2783   size_t fail_after = ran_num % bytes;
2784 #endif
2785 
2786   int count=0;
2787   while (bytes_remaining) {
2788     // select bytes_to_rq to get to the next chunk_size boundary
2789 
2790     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2791     // Note allocate and commit
2792     char * p_new;
2793 
2794 #ifdef ASSERT
2795     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2796 #else
2797     const bool inject_error_now = false;
2798 #endif
2799 
2800     if (inject_error_now) {
2801       p_new = NULL;
2802     } else {
2803       if (!UseNUMAInterleaving) {
2804         p_new = (char *) VirtualAlloc(next_alloc_addr,
2805                                       bytes_to_rq,
2806                                       flags,
2807                                       prot);
2808       } else {
2809         // get the next node to use from the used_node_list
2810         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2811         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2812         p_new = (char *)VirtualAllocExNuma(hProc, next_alloc_addr, bytes_to_rq, flags, prot, node);
2813       }
2814     }
2815 
2816     if (p_new == NULL) {
2817       // Free any allocated pages
2818       if (next_alloc_addr > p_buf) {
2819         // Some memory was committed so release it.
2820         size_t bytes_to_release = bytes - bytes_remaining;
2821         // NMT has yet to record any individual blocks, so it
2822         // need to create a dummy 'reserve' record to match
2823         // the release.
2824         MemTracker::record_virtual_memory_reserve((address)p_buf,
2825                                                   bytes_to_release, CALLER_PC);
2826         os::release_memory(p_buf, bytes_to_release);
2827       }
2828 #ifdef ASSERT
2829       if (should_inject_error) {
2830         log_develop_debug(pagesize)("Reserving pages individually failed.");
2831       }
2832 #endif
2833       return NULL;
2834     }
2835 
2836     bytes_remaining -= bytes_to_rq;
2837     next_alloc_addr += bytes_to_rq;
2838     count++;
2839   }
2840   // Although the memory is allocated individually, it is returned as one.
2841   // NMT records it as one block.
2842   if ((flags & MEM_COMMIT) != 0) {
2843     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
2844   } else {
2845     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
2846   }
2847 
2848   // made it this far, success
2849   return p_buf;
2850 }
2851 
2852 
2853 
2854 void os::large_page_init() {
2855   if (!UseLargePages) return;
2856 
2857   // print a warning if any large page related flag is specified on command line
2858   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2859                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2860   bool success = false;
2861 
2862 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2863   if (request_lock_memory_privilege()) {
2864     size_t s = GetLargePageMinimum();
2865     if (s) {
2866 #if defined(IA32) || defined(AMD64)
2867       if (s > 4*M || LargePageSizeInBytes > 4*M) {
2868         WARN("JVM cannot use large pages bigger than 4mb.");
2869       } else {
2870 #endif
2871         if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
2872           _large_page_size = LargePageSizeInBytes;
2873         } else {
2874           _large_page_size = s;
2875         }
2876         success = true;
2877 #if defined(IA32) || defined(AMD64)
2878       }
2879 #endif
2880     } else {
2881       WARN("Large page is not supported by the processor.");
2882     }
2883   } else {
2884     WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
2885   }
2886 #undef WARN
2887 
2888   const size_t default_page_size = (size_t) vm_page_size();
2889   if (success && _large_page_size > default_page_size) {
2890     _page_sizes[0] = _large_page_size;
2891     _page_sizes[1] = default_page_size;
2892     _page_sizes[2] = 0;
2893   }
2894 
2895   cleanup_after_large_page_init();
2896   UseLargePages = success;
2897 }
2898 
2899 // On win32, one cannot release just a part of reserved memory, it's an
2900 // all or nothing deal.  When we split a reservation, we must break the
2901 // reservation into two reservations.
2902 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
2903                                   bool realloc) {
2904   if (size > 0) {
2905     release_memory(base, size);
2906     if (realloc) {
2907       reserve_memory(split, base);
2908     }
2909     if (size != split) {
2910       reserve_memory(size - split, base + split);
2911     }
2912   }
2913 }
2914 
2915 // Multiple threads can race in this code but it's not possible to unmap small sections of
2916 // virtual space to get requested alignment, like posix-like os's.
2917 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
2918 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
2919   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
2920          "Alignment must be a multiple of allocation granularity (page size)");
2921   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
2922 
2923   size_t extra_size = size + alignment;
2924   assert(extra_size >= size, "overflow, size is too large to allow alignment");
2925 
2926   char* aligned_base = NULL;
2927 
2928   do {
2929     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
2930     if (extra_base == NULL) {
2931       return NULL;
2932     }
2933     // Do manual alignment
2934     aligned_base = align_up(extra_base, alignment);
2935 
2936     os::release_memory(extra_base, extra_size);
2937 
2938     aligned_base = os::reserve_memory(size, aligned_base);
2939 
2940   } while (aligned_base == NULL);
2941 
2942   return aligned_base;
2943 }
2944 
2945 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
2946   assert((size_t)addr % os::vm_allocation_granularity() == 0,
2947          "reserve alignment");
2948   assert(bytes % os::vm_page_size() == 0, "reserve page size");
2949   char* res;
2950   // note that if UseLargePages is on, all the areas that require interleaving
2951   // will go thru reserve_memory_special rather than thru here.
2952   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
2953   if (!use_individual) {
2954     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
2955   } else {
2956     elapsedTimer reserveTimer;
2957     if (Verbose && PrintMiscellaneous) reserveTimer.start();
2958     // in numa interleaving, we have to allocate pages individually
2959     // (well really chunks of NUMAInterleaveGranularity size)
2960     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
2961     if (res == NULL) {
2962       warning("NUMA page allocation failed");
2963     }
2964     if (Verbose && PrintMiscellaneous) {
2965       reserveTimer.stop();
2966       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
2967                     reserveTimer.milliseconds(), reserveTimer.ticks());
2968     }
2969   }
2970   assert(res == NULL || addr == NULL || addr == res,
2971          "Unexpected address from reserve.");
2972 
2973   return res;
2974 }
2975 
2976 // Reserve memory at an arbitrary address, only if that area is
2977 // available (and not reserved for something else).
2978 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2979   // Windows os::reserve_memory() fails of the requested address range is
2980   // not avilable.
2981   return reserve_memory(bytes, requested_addr);
2982 }
2983 
2984 size_t os::large_page_size() {
2985   return _large_page_size;
2986 }
2987 
2988 bool os::can_commit_large_page_memory() {
2989   // Windows only uses large page memory when the entire region is reserved
2990   // and committed in a single VirtualAlloc() call. This may change in the
2991   // future, but with Windows 2003 it's not possible to commit on demand.
2992   return false;
2993 }
2994 
2995 bool os::can_execute_large_page_memory() {
2996   return true;
2997 }
2998 
2999 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3000                                  bool exec) {
3001   assert(UseLargePages, "only for large pages");
3002 
3003   if (!is_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3004     return NULL; // Fallback to small pages.
3005   }
3006 
3007   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3008   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3009 
3010   // with large pages, there are two cases where we need to use Individual Allocation
3011   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3012   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3013   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3014     log_debug(pagesize)("Reserving large pages individually.");
3015 
3016     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3017     if (p_buf == NULL) {
3018       // give an appropriate warning message
3019       if (UseNUMAInterleaving) {
3020         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3021       }
3022       if (UseLargePagesIndividualAllocation) {
3023         warning("Individually allocated large pages failed, "
3024                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3025       }
3026       return NULL;
3027     }
3028 
3029     return p_buf;
3030 
3031   } else {
3032     log_debug(pagesize)("Reserving large pages in a single large chunk.");
3033 
3034     // normal policy just allocate it all at once
3035     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3036     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3037     if (res != NULL) {
3038       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3039     }
3040 
3041     return res;
3042   }
3043 }
3044 
3045 bool os::release_memory_special(char* base, size_t bytes) {
3046   assert(base != NULL, "Sanity check");
3047   return release_memory(base, bytes);
3048 }
3049 
3050 void os::print_statistics() {
3051 }
3052 
3053 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3054   int err = os::get_last_error();
3055   char buf[256];
3056   size_t buf_len = os::lasterror(buf, sizeof(buf));
3057   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3058           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3059           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3060 }
3061 
3062 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3063   if (bytes == 0) {
3064     // Don't bother the OS with noops.
3065     return true;
3066   }
3067   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3068   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3069   // Don't attempt to print anything if the OS call fails. We're
3070   // probably low on resources, so the print itself may cause crashes.
3071 
3072   // unless we have NUMAInterleaving enabled, the range of a commit
3073   // is always within a reserve covered by a single VirtualAlloc
3074   // in that case we can just do a single commit for the requested size
3075   if (!UseNUMAInterleaving) {
3076     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3077       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3078       return false;
3079     }
3080     if (exec) {
3081       DWORD oldprot;
3082       // Windows doc says to use VirtualProtect to get execute permissions
3083       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3084         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3085         return false;
3086       }
3087     }
3088     return true;
3089   } else {
3090 
3091     // when NUMAInterleaving is enabled, the commit might cover a range that
3092     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3093     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3094     // returns represents the number of bytes that can be committed in one step.
3095     size_t bytes_remaining = bytes;
3096     char * next_alloc_addr = addr;
3097     while (bytes_remaining > 0) {
3098       MEMORY_BASIC_INFORMATION alloc_info;
3099       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3100       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3101       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3102                        PAGE_READWRITE) == NULL) {
3103         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3104                                             exec);)
3105         return false;
3106       }
3107       if (exec) {
3108         DWORD oldprot;
3109         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3110                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3111           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3112                                               exec);)
3113           return false;
3114         }
3115       }
3116       bytes_remaining -= bytes_to_rq;
3117       next_alloc_addr += bytes_to_rq;
3118     }
3119   }
3120   // if we made it this far, return true
3121   return true;
3122 }
3123 
3124 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3125                           bool exec) {
3126   // alignment_hint is ignored on this OS
3127   return pd_commit_memory(addr, size, exec);
3128 }
3129 
3130 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3131                                   const char* mesg) {
3132   assert(mesg != NULL, "mesg must be specified");
3133   if (!pd_commit_memory(addr, size, exec)) {
3134     warn_fail_commit_memory(addr, size, exec);
3135     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
3136   }
3137 }
3138 
3139 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3140                                   size_t alignment_hint, bool exec,
3141                                   const char* mesg) {
3142   // alignment_hint is ignored on this OS
3143   pd_commit_memory_or_exit(addr, size, exec, mesg);
3144 }
3145 
3146 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3147   if (bytes == 0) {
3148     // Don't bother the OS with noops.
3149     return true;
3150   }
3151   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3152   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3153   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3154 }
3155 
3156 bool os::pd_release_memory(char* addr, size_t bytes) {
3157   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3158 }
3159 
3160 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3161   return os::commit_memory(addr, size, !ExecMem);
3162 }
3163 
3164 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3165   return os::uncommit_memory(addr, size);
3166 }
3167 
3168 static bool protect_pages_individually(char* addr, size_t bytes, unsigned int p, DWORD *old_status) {
3169   uint count = 0;
3170   bool ret = false;
3171   size_t bytes_remaining = bytes;
3172   char * next_protect_addr = addr;
3173 
3174   // Use VirtualQuery() to get the chunk size.
3175   while (bytes_remaining) {
3176     MEMORY_BASIC_INFORMATION alloc_info;
3177     if (VirtualQuery(next_protect_addr, &alloc_info, sizeof(alloc_info)) == 0) {
3178       return false;
3179     }
3180 
3181     size_t bytes_to_protect = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3182     // We used different API at allocate_pages_individually() based on UseNUMAInterleaving,
3183     // but we don't distinguish here as both cases are protected by same API.
3184     ret = VirtualProtect(next_protect_addr, bytes_to_protect, p, old_status) != 0;
3185     warning("Failed protecting pages individually for chunk #%u", count);
3186     if (!ret) {
3187       return false;
3188     }
3189 
3190     bytes_remaining -= bytes_to_protect;
3191     next_protect_addr += bytes_to_protect;
3192     count++;
3193   }
3194   return ret;
3195 }
3196 
3197 // Set protections specified
3198 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3199                         bool is_committed) {
3200   unsigned int p = 0;
3201   switch (prot) {
3202   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3203   case MEM_PROT_READ: p = PAGE_READONLY; break;
3204   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3205   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3206   default:
3207     ShouldNotReachHere();
3208   }
3209 
3210   DWORD old_status;
3211 
3212   // Strange enough, but on Win32 one can change protection only for committed
3213   // memory, not a big deal anyway, as bytes less or equal than 64K
3214   if (!is_committed) {
3215     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3216                           "cannot commit protection page");
3217   }
3218   // One cannot use os::guard_memory() here, as on Win32 guard page
3219   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3220   //
3221   // Pages in the region become guard pages. Any attempt to access a guard page
3222   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3223   // the guard page status. Guard pages thus act as a one-time access alarm.
3224   bool ret;
3225   if (UseNUMAInterleaving) {
3226     // If UseNUMAInterleaving is enabled, the pages may have been allocated a chunk at a time,
3227     // so we must protect the chunks individually.
3228     ret = protect_pages_individually(addr, bytes, p, &old_status);
3229   } else {
3230     ret = VirtualProtect(addr, bytes, p, &old_status) != 0;
3231   }
3232 #ifdef ASSERT
3233   if (!ret) {
3234     int err = os::get_last_error();
3235     char buf[256];
3236     size_t buf_len = os::lasterror(buf, sizeof(buf));
3237     warning("INFO: os::protect_memory(" PTR_FORMAT ", " SIZE_FORMAT
3238           ") failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3239           buf_len != 0 ? buf : "<no_error_string>", err);
3240   }
3241 #endif
3242   return ret;
3243 }
3244 
3245 bool os::guard_memory(char* addr, size_t bytes) {
3246   DWORD old_status;
3247   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3248 }
3249 
3250 bool os::unguard_memory(char* addr, size_t bytes) {
3251   DWORD old_status;
3252   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3253 }
3254 
3255 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3256 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3257 void os::numa_make_global(char *addr, size_t bytes)    { }
3258 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3259 bool os::numa_topology_changed()                       { return false; }
3260 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3261 int os::numa_get_group_id()                            { return 0; }
3262 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3263   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3264     // Provide an answer for UMA systems
3265     ids[0] = 0;
3266     return 1;
3267   } else {
3268     // check for size bigger than actual groups_num
3269     size = MIN2(size, numa_get_groups_num());
3270     for (int i = 0; i < (int)size; i++) {
3271       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3272     }
3273     return size;
3274   }
3275 }
3276 
3277 bool os::get_page_info(char *start, page_info* info) {
3278   return false;
3279 }
3280 
3281 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3282                      page_info* page_found) {
3283   return end;
3284 }
3285 
3286 char* os::non_memory_address_word() {
3287   // Must never look like an address returned by reserve_memory,
3288   // even in its subfields (as defined by the CPU immediate fields,
3289   // if the CPU splits constants across multiple instructions).
3290   return (char*)-1;
3291 }
3292 
3293 #define MAX_ERROR_COUNT 100
3294 #define SYS_THREAD_ERROR 0xffffffffUL
3295 
3296 void os::pd_start_thread(Thread* thread) {
3297   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3298   // Returns previous suspend state:
3299   // 0:  Thread was not suspended
3300   // 1:  Thread is running now
3301   // >1: Thread is still suspended.
3302   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3303 }
3304 
3305 class HighResolutionInterval : public CHeapObj<mtThread> {
3306   // The default timer resolution seems to be 10 milliseconds.
3307   // (Where is this written down?)
3308   // If someone wants to sleep for only a fraction of the default,
3309   // then we set the timer resolution down to 1 millisecond for
3310   // the duration of their interval.
3311   // We carefully set the resolution back, since otherwise we
3312   // seem to incur an overhead (3%?) that we don't need.
3313   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3314   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3315   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3316   // timeBeginPeriod() if the relative error exceeded some threshold.
3317   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3318   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3319   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3320   // resolution timers running.
3321  private:
3322   jlong resolution;
3323  public:
3324   HighResolutionInterval(jlong ms) {
3325     resolution = ms % 10L;
3326     if (resolution != 0) {
3327       MMRESULT result = timeBeginPeriod(1L);
3328     }
3329   }
3330   ~HighResolutionInterval() {
3331     if (resolution != 0) {
3332       MMRESULT result = timeEndPeriod(1L);
3333     }
3334     resolution = 0L;
3335   }
3336 };
3337 
3338 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3339   jlong limit = (jlong) MAXDWORD;
3340 
3341   while (ms > limit) {
3342     int res;
3343     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3344       return res;
3345     }
3346     ms -= limit;
3347   }
3348 
3349   assert(thread == Thread::current(), "thread consistency check");
3350   OSThread* osthread = thread->osthread();
3351   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3352   int result;
3353   if (interruptable) {
3354     assert(thread->is_Java_thread(), "must be java thread");
3355     JavaThread *jt = (JavaThread *) thread;
3356     ThreadBlockInVM tbivm(jt);
3357 
3358     jt->set_suspend_equivalent();
3359     // cleared by handle_special_suspend_equivalent_condition() or
3360     // java_suspend_self() via check_and_wait_while_suspended()
3361 
3362     HANDLE events[1];
3363     events[0] = osthread->interrupt_event();
3364     HighResolutionInterval *phri=NULL;
3365     if (!ForceTimeHighResolution) {
3366       phri = new HighResolutionInterval(ms);
3367     }
3368     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3369       result = OS_TIMEOUT;
3370     } else {
3371       ResetEvent(osthread->interrupt_event());
3372       osthread->set_interrupted(false);
3373       result = OS_INTRPT;
3374     }
3375     delete phri; //if it is NULL, harmless
3376 
3377     // were we externally suspended while we were waiting?
3378     jt->check_and_wait_while_suspended();
3379   } else {
3380     assert(!thread->is_Java_thread(), "must not be java thread");
3381     Sleep((long) ms);
3382     result = OS_TIMEOUT;
3383   }
3384   return result;
3385 }
3386 
3387 // Short sleep, direct OS call.
3388 //
3389 // ms = 0, means allow others (if any) to run.
3390 //
3391 void os::naked_short_sleep(jlong ms) {
3392   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3393   Sleep(ms);
3394 }
3395 
3396 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3397 void os::infinite_sleep() {
3398   while (true) {    // sleep forever ...
3399     Sleep(100000);  // ... 100 seconds at a time
3400   }
3401 }
3402 
3403 typedef BOOL (WINAPI * STTSignature)(void);
3404 
3405 void os::naked_yield() {
3406   // Consider passing back the return value from SwitchToThread().
3407   SwitchToThread();
3408 }
3409 
3410 // Win32 only gives you access to seven real priorities at a time,
3411 // so we compress Java's ten down to seven.  It would be better
3412 // if we dynamically adjusted relative priorities.
3413 
3414 int os::java_to_os_priority[CriticalPriority + 1] = {
3415   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3416   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3417   THREAD_PRIORITY_LOWEST,                       // 2
3418   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3419   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3420   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3421   THREAD_PRIORITY_NORMAL,                       // 6
3422   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3423   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3424   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3425   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3426   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3427 };
3428 
3429 int prio_policy1[CriticalPriority + 1] = {
3430   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3431   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3432   THREAD_PRIORITY_LOWEST,                       // 2
3433   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3434   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3435   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3436   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3437   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3438   THREAD_PRIORITY_HIGHEST,                      // 8
3439   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3440   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3441   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3442 };
3443 
3444 static int prio_init() {
3445   // If ThreadPriorityPolicy is 1, switch tables
3446   if (ThreadPriorityPolicy == 1) {
3447     int i;
3448     for (i = 0; i < CriticalPriority + 1; i++) {
3449       os::java_to_os_priority[i] = prio_policy1[i];
3450     }
3451   }
3452   if (UseCriticalJavaThreadPriority) {
3453     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3454   }
3455   return 0;
3456 }
3457 
3458 OSReturn os::set_native_priority(Thread* thread, int priority) {
3459   if (!UseThreadPriorities) return OS_OK;
3460   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3461   return ret ? OS_OK : OS_ERR;
3462 }
3463 
3464 OSReturn os::get_native_priority(const Thread* const thread,
3465                                  int* priority_ptr) {
3466   if (!UseThreadPriorities) {
3467     *priority_ptr = java_to_os_priority[NormPriority];
3468     return OS_OK;
3469   }
3470   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3471   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3472     assert(false, "GetThreadPriority failed");
3473     return OS_ERR;
3474   }
3475   *priority_ptr = os_prio;
3476   return OS_OK;
3477 }
3478 
3479 
3480 // Hint to the underlying OS that a task switch would not be good.
3481 // Void return because it's a hint and can fail.
3482 void os::hint_no_preempt() {}
3483 
3484 void os::interrupt(Thread* thread) {
3485   assert(!thread->is_Java_thread() || Thread::current() == thread ||
3486          Threads_lock->owned_by_self(),
3487          "possibility of dangling Thread pointer");
3488 
3489   OSThread* osthread = thread->osthread();
3490   osthread->set_interrupted(true);
3491   // More than one thread can get here with the same value of osthread,
3492   // resulting in multiple notifications.  We do, however, want the store
3493   // to interrupted() to be visible to other threads before we post
3494   // the interrupt event.
3495   OrderAccess::release();
3496   SetEvent(osthread->interrupt_event());
3497   // For JSR166:  unpark after setting status
3498   if (thread->is_Java_thread()) {
3499     ((JavaThread*)thread)->parker()->unpark();
3500   }
3501 
3502   ParkEvent * ev = thread->_ParkEvent;
3503   if (ev != NULL) ev->unpark();
3504 }
3505 
3506 
3507 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3508   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3509          "possibility of dangling Thread pointer");
3510 
3511   OSThread* osthread = thread->osthread();
3512   // There is no synchronization between the setting of the interrupt
3513   // and it being cleared here. It is critical - see 6535709 - that
3514   // we only clear the interrupt state, and reset the interrupt event,
3515   // if we are going to report that we were indeed interrupted - else
3516   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3517   // depending on the timing. By checking thread interrupt event to see
3518   // if the thread gets real interrupt thus prevent spurious wakeup.
3519   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3520   if (interrupted && clear_interrupted) {
3521     osthread->set_interrupted(false);
3522     ResetEvent(osthread->interrupt_event());
3523   } // Otherwise leave the interrupted state alone
3524 
3525   return interrupted;
3526 }
3527 
3528 // GetCurrentThreadId() returns DWORD
3529 intx os::current_thread_id()  { return GetCurrentThreadId(); }
3530 
3531 static int _initial_pid = 0;
3532 
3533 int os::current_process_id() {
3534   return (_initial_pid ? _initial_pid : _getpid());
3535 }
3536 
3537 int    os::win32::_vm_page_size              = 0;
3538 int    os::win32::_vm_allocation_granularity = 0;
3539 int    os::win32::_processor_type            = 0;
3540 // Processor level is not available on non-NT systems, use vm_version instead
3541 int    os::win32::_processor_level           = 0;
3542 julong os::win32::_physical_memory           = 0;
3543 size_t os::win32::_default_stack_size        = 0;
3544 
3545 intx          os::win32::_os_thread_limit    = 0;
3546 volatile intx os::win32::_os_thread_count    = 0;
3547 
3548 bool   os::win32::_is_windows_server         = false;
3549 
3550 // 6573254
3551 // Currently, the bug is observed across all the supported Windows releases,
3552 // including the latest one (as of this writing - Windows Server 2012 R2)
3553 bool   os::win32::_has_exit_bug              = true;
3554 
3555 void os::win32::initialize_system_info() {
3556   SYSTEM_INFO si;
3557   GetSystemInfo(&si);
3558   _vm_page_size    = si.dwPageSize;
3559   _vm_allocation_granularity = si.dwAllocationGranularity;
3560   _processor_type  = si.dwProcessorType;
3561   _processor_level = si.wProcessorLevel;
3562   set_processor_count(si.dwNumberOfProcessors);
3563 
3564   MEMORYSTATUSEX ms;
3565   ms.dwLength = sizeof(ms);
3566 
3567   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3568   // dwMemoryLoad (% of memory in use)
3569   GlobalMemoryStatusEx(&ms);
3570   _physical_memory = ms.ullTotalPhys;
3571 
3572   if (FLAG_IS_DEFAULT(MaxRAM)) {
3573     // Adjust MaxRAM according to the maximum virtual address space available.
3574     FLAG_SET_DEFAULT(MaxRAM, MIN2(MaxRAM, (uint64_t) ms.ullTotalVirtual));
3575   }
3576 
3577   OSVERSIONINFOEX oi;
3578   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3579   GetVersionEx((OSVERSIONINFO*)&oi);
3580   switch (oi.dwPlatformId) {
3581   case VER_PLATFORM_WIN32_NT:
3582     {
3583       int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3584       if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3585           oi.wProductType == VER_NT_SERVER) {
3586         _is_windows_server = true;
3587       }
3588     }
3589     break;
3590   default: fatal("Unknown platform");
3591   }
3592 
3593   _default_stack_size = os::current_stack_size();
3594   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3595   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3596          "stack size not a multiple of page size");
3597 
3598   initialize_performance_counter();
3599 }
3600 
3601 
3602 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3603                                       int ebuflen) {
3604   char path[MAX_PATH];
3605   DWORD size;
3606   DWORD pathLen = (DWORD)sizeof(path);
3607   HINSTANCE result = NULL;
3608 
3609   // only allow library name without path component
3610   assert(strchr(name, '\\') == NULL, "path not allowed");
3611   assert(strchr(name, ':') == NULL, "path not allowed");
3612   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3613     jio_snprintf(ebuf, ebuflen,
3614                  "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3615     return NULL;
3616   }
3617 
3618   // search system directory
3619   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3620     if (size >= pathLen) {
3621       return NULL; // truncated
3622     }
3623     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3624       return NULL; // truncated
3625     }
3626     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3627       return result;
3628     }
3629   }
3630 
3631   // try Windows directory
3632   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3633     if (size >= pathLen) {
3634       return NULL; // truncated
3635     }
3636     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3637       return NULL; // truncated
3638     }
3639     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3640       return result;
3641     }
3642   }
3643 
3644   jio_snprintf(ebuf, ebuflen,
3645                "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3646   return NULL;
3647 }
3648 
3649 #define MAXIMUM_THREADS_TO_KEEP (16 * MAXIMUM_WAIT_OBJECTS)
3650 #define EXIT_TIMEOUT 300000 /* 5 minutes */
3651 
3652 static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3653   InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3654   return TRUE;
3655 }
3656 
3657 int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3658   // Basic approach:
3659   //  - Each exiting thread registers its intent to exit and then does so.
3660   //  - A thread trying to terminate the process must wait for all
3661   //    threads currently exiting to complete their exit.
3662 
3663   if (os::win32::has_exit_bug()) {
3664     // The array holds handles of the threads that have started exiting by calling
3665     // _endthreadex().
3666     // Should be large enough to avoid blocking the exiting thread due to lack of
3667     // a free slot.
3668     static HANDLE handles[MAXIMUM_THREADS_TO_KEEP];
3669     static int handle_count = 0;
3670 
3671     static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3672     static CRITICAL_SECTION crit_sect;
3673     static volatile DWORD process_exiting = 0;
3674     int i, j;
3675     DWORD res;
3676     HANDLE hproc, hthr;
3677 
3678     // We only attempt to register threads until a process exiting
3679     // thread manages to set the process_exiting flag. Any threads
3680     // that come through here after the process_exiting flag is set
3681     // are unregistered and will be caught in the SuspendThread()
3682     // infinite loop below.
3683     bool registered = false;
3684 
3685     // The first thread that reached this point, initializes the critical section.
3686     if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3687       warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3688     } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3689       if (what != EPT_THREAD) {
3690         // Atomically set process_exiting before the critical section
3691         // to increase the visibility between racing threads.
3692         Atomic::cmpxchg(GetCurrentThreadId(), &process_exiting, (DWORD)0);
3693       }
3694       EnterCriticalSection(&crit_sect);
3695 
3696       if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3697         // Remove from the array those handles of the threads that have completed exiting.
3698         for (i = 0, j = 0; i < handle_count; ++i) {
3699           res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3700           if (res == WAIT_TIMEOUT) {
3701             handles[j++] = handles[i];
3702           } else {
3703             if (res == WAIT_FAILED) {
3704               warning("WaitForSingleObject failed (%u) in %s: %d\n",
3705                       GetLastError(), __FILE__, __LINE__);
3706             }
3707             // Don't keep the handle, if we failed waiting for it.
3708             CloseHandle(handles[i]);
3709           }
3710         }
3711 
3712         // If there's no free slot in the array of the kept handles, we'll have to
3713         // wait until at least one thread completes exiting.
3714         if ((handle_count = j) == MAXIMUM_THREADS_TO_KEEP) {
3715           // Raise the priority of the oldest exiting thread to increase its chances
3716           // to complete sooner.
3717           SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3718           res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3719           if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3720             i = (res - WAIT_OBJECT_0);
3721             handle_count = MAXIMUM_THREADS_TO_KEEP - 1;
3722             for (; i < handle_count; ++i) {
3723               handles[i] = handles[i + 1];
3724             }
3725           } else {
3726             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3727                     (res == WAIT_FAILED ? "failed" : "timed out"),
3728                     GetLastError(), __FILE__, __LINE__);
3729             // Don't keep handles, if we failed waiting for them.
3730             for (i = 0; i < MAXIMUM_THREADS_TO_KEEP; ++i) {
3731               CloseHandle(handles[i]);
3732             }
3733             handle_count = 0;
3734           }
3735         }
3736 
3737         // Store a duplicate of the current thread handle in the array of handles.
3738         hproc = GetCurrentProcess();
3739         hthr = GetCurrentThread();
3740         if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3741                              0, FALSE, DUPLICATE_SAME_ACCESS)) {
3742           warning("DuplicateHandle failed (%u) in %s: %d\n",
3743                   GetLastError(), __FILE__, __LINE__);
3744 
3745           // We can't register this thread (no more handles) so this thread
3746           // may be racing with a thread that is calling exit(). If the thread
3747           // that is calling exit() has managed to set the process_exiting
3748           // flag, then this thread will be caught in the SuspendThread()
3749           // infinite loop below which closes that race. A small timing
3750           // window remains before the process_exiting flag is set, but it
3751           // is only exposed when we are out of handles.
3752         } else {
3753           ++handle_count;
3754           registered = true;
3755 
3756           // The current exiting thread has stored its handle in the array, and now
3757           // should leave the critical section before calling _endthreadex().
3758         }
3759 
3760       } else if (what != EPT_THREAD && handle_count > 0) {
3761         jlong start_time, finish_time, timeout_left;
3762         // Before ending the process, make sure all the threads that had called
3763         // _endthreadex() completed.
3764 
3765         // Set the priority level of the current thread to the same value as
3766         // the priority level of exiting threads.
3767         // This is to ensure it will be given a fair chance to execute if
3768         // the timeout expires.
3769         hthr = GetCurrentThread();
3770         SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3771         start_time = os::javaTimeNanos();
3772         finish_time = start_time + ((jlong)EXIT_TIMEOUT * 1000000L);
3773         for (i = 0; ; ) {
3774           int portion_count = handle_count - i;
3775           if (portion_count > MAXIMUM_WAIT_OBJECTS) {
3776             portion_count = MAXIMUM_WAIT_OBJECTS;
3777           }
3778           for (j = 0; j < portion_count; ++j) {
3779             SetThreadPriority(handles[i + j], THREAD_PRIORITY_ABOVE_NORMAL);
3780           }
3781           timeout_left = (finish_time - start_time) / 1000000L;
3782           if (timeout_left < 0) {
3783             timeout_left = 0;
3784           }
3785           res = WaitForMultipleObjects(portion_count, handles + i, TRUE, timeout_left);
3786           if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
3787             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3788                     (res == WAIT_FAILED ? "failed" : "timed out"),
3789                     GetLastError(), __FILE__, __LINE__);
3790             // Reset portion_count so we close the remaining
3791             // handles due to this error.
3792             portion_count = handle_count - i;
3793           }
3794           for (j = 0; j < portion_count; ++j) {
3795             CloseHandle(handles[i + j]);
3796           }
3797           if ((i += portion_count) >= handle_count) {
3798             break;
3799           }
3800           start_time = os::javaTimeNanos();
3801         }
3802         handle_count = 0;
3803       }
3804 
3805       LeaveCriticalSection(&crit_sect);
3806     }
3807 
3808     if (!registered &&
3809         OrderAccess::load_acquire(&process_exiting) != 0 &&
3810         process_exiting != GetCurrentThreadId()) {
3811       // Some other thread is about to call exit(), so we don't let
3812       // the current unregistered thread proceed to exit() or _endthreadex()
3813       while (true) {
3814         SuspendThread(GetCurrentThread());
3815         // Avoid busy-wait loop, if SuspendThread() failed.
3816         Sleep(EXIT_TIMEOUT);
3817       }
3818     }
3819   }
3820 
3821   // We are here if either
3822   // - there's no 'race at exit' bug on this OS release;
3823   // - initialization of the critical section failed (unlikely);
3824   // - the current thread has registered itself and left the critical section;
3825   // - the process-exiting thread has raised the flag and left the critical section.
3826   if (what == EPT_THREAD) {
3827     _endthreadex((unsigned)exit_code);
3828   } else if (what == EPT_PROCESS) {
3829     ::exit(exit_code);
3830   } else {
3831     _exit(exit_code);
3832   }
3833 
3834   // Should not reach here
3835   return exit_code;
3836 }
3837 
3838 #undef EXIT_TIMEOUT
3839 
3840 void os::win32::setmode_streams() {
3841   _setmode(_fileno(stdin), _O_BINARY);
3842   _setmode(_fileno(stdout), _O_BINARY);
3843   _setmode(_fileno(stderr), _O_BINARY);
3844 }
3845 
3846 
3847 bool os::is_debugger_attached() {
3848   return IsDebuggerPresent() ? true : false;
3849 }
3850 
3851 
3852 void os::wait_for_keypress_at_exit(void) {
3853   if (PauseAtExit) {
3854     fprintf(stderr, "Press any key to continue...\n");
3855     fgetc(stdin);
3856   }
3857 }
3858 
3859 
3860 bool os::message_box(const char* title, const char* message) {
3861   int result = MessageBox(NULL, message, title,
3862                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3863   return result == IDYES;
3864 }
3865 
3866 #ifndef PRODUCT
3867 #ifndef _WIN64
3868 // Helpers to check whether NX protection is enabled
3869 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3870   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3871       pex->ExceptionRecord->NumberParameters > 0 &&
3872       pex->ExceptionRecord->ExceptionInformation[0] ==
3873       EXCEPTION_INFO_EXEC_VIOLATION) {
3874     return EXCEPTION_EXECUTE_HANDLER;
3875   }
3876   return EXCEPTION_CONTINUE_SEARCH;
3877 }
3878 
3879 void nx_check_protection() {
3880   // If NX is enabled we'll get an exception calling into code on the stack
3881   char code[] = { (char)0xC3 }; // ret
3882   void *code_ptr = (void *)code;
3883   __try {
3884     __asm call code_ptr
3885   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3886     tty->print_raw_cr("NX protection detected.");
3887   }
3888 }
3889 #endif // _WIN64
3890 #endif // PRODUCT
3891 
3892 // This is called _before_ the global arguments have been parsed
3893 void os::init(void) {
3894   _initial_pid = _getpid();
3895 
3896   init_random(1234567);
3897 
3898   win32::initialize_system_info();
3899   win32::setmode_streams();
3900   init_page_sizes((size_t) win32::vm_page_size());
3901 
3902   // This may be overridden later when argument processing is done.
3903   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation, false);
3904 
3905   // Initialize main_process and main_thread
3906   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
3907   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3908                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3909     fatal("DuplicateHandle failed\n");
3910   }
3911   main_thread_id = (int) GetCurrentThreadId();
3912 
3913   // initialize fast thread access - only used for 32-bit
3914   win32::initialize_thread_ptr_offset();
3915 }
3916 
3917 // To install functions for atexit processing
3918 extern "C" {
3919   static void perfMemory_exit_helper() {
3920     perfMemory_exit();
3921   }
3922 }
3923 
3924 static jint initSock();
3925 
3926 // this is called _after_ the global arguments have been parsed
3927 jint os::init_2(void) {
3928   // Setup Windows Exceptions
3929 
3930   // for debugging float code generation bugs
3931   if (ForceFloatExceptions) {
3932 #ifndef  _WIN64
3933     static long fp_control_word = 0;
3934     __asm { fstcw fp_control_word }
3935     // see Intel PPro Manual, Vol. 2, p 7-16
3936     const long precision = 0x20;
3937     const long underflow = 0x10;
3938     const long overflow  = 0x08;
3939     const long zero_div  = 0x04;
3940     const long denorm    = 0x02;
3941     const long invalid   = 0x01;
3942     fp_control_word |= invalid;
3943     __asm { fldcw fp_control_word }
3944 #endif
3945   }
3946 
3947   // If stack_commit_size is 0, windows will reserve the default size,
3948   // but only commit a small portion of it.
3949   size_t stack_commit_size = align_up(ThreadStackSize*K, os::vm_page_size());
3950   size_t default_reserve_size = os::win32::default_stack_size();
3951   size_t actual_reserve_size = stack_commit_size;
3952   if (stack_commit_size < default_reserve_size) {
3953     // If stack_commit_size == 0, we want this too
3954     actual_reserve_size = default_reserve_size;
3955   }
3956 
3957   // Check minimum allowable stack size for thread creation and to initialize
3958   // the java system classes, including StackOverflowError - depends on page
3959   // size.  Add two 4K pages for compiler2 recursion in main thread.
3960   // Add in 4*BytesPerWord 4K pages to account for VM stack during
3961   // class initialization depending on 32 or 64 bit VM.
3962   size_t min_stack_allowed =
3963             (size_t)(JavaThread::stack_guard_zone_size() +
3964                      JavaThread::stack_shadow_zone_size() +
3965                      (4*BytesPerWord COMPILER2_PRESENT(+2)) * 4 * K);
3966 
3967   min_stack_allowed = align_up(min_stack_allowed, os::vm_page_size());
3968 
3969   if (actual_reserve_size < min_stack_allowed) {
3970     tty->print_cr("\nThe Java thread stack size specified is too small. "
3971                   "Specify at least %dk",
3972                   min_stack_allowed / K);
3973     return JNI_ERR;
3974   }
3975 
3976   JavaThread::set_stack_size_at_create(stack_commit_size);
3977 
3978   // Calculate theoretical max. size of Threads to guard gainst artifical
3979   // out-of-memory situations, where all available address-space has been
3980   // reserved by thread stacks.
3981   assert(actual_reserve_size != 0, "Must have a stack");
3982 
3983   // Calculate the thread limit when we should start doing Virtual Memory
3984   // banging. Currently when the threads will have used all but 200Mb of space.
3985   //
3986   // TODO: consider performing a similar calculation for commit size instead
3987   // as reserve size, since on a 64-bit platform we'll run into that more
3988   // often than running out of virtual memory space.  We can use the
3989   // lower value of the two calculations as the os_thread_limit.
3990   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
3991   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
3992 
3993   // at exit methods are called in the reverse order of their registration.
3994   // there is no limit to the number of functions registered. atexit does
3995   // not set errno.
3996 
3997   if (PerfAllowAtExitRegistration) {
3998     // only register atexit functions if PerfAllowAtExitRegistration is set.
3999     // atexit functions can be delayed until process exit time, which
4000     // can be problematic for embedded VM situations. Embedded VMs should
4001     // call DestroyJavaVM() to assure that VM resources are released.
4002 
4003     // note: perfMemory_exit_helper atexit function may be removed in
4004     // the future if the appropriate cleanup code can be added to the
4005     // VM_Exit VMOperation's doit method.
4006     if (atexit(perfMemory_exit_helper) != 0) {
4007       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4008     }
4009   }
4010 
4011 #ifndef _WIN64
4012   // Print something if NX is enabled (win32 on AMD64)
4013   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4014 #endif
4015 
4016   // initialize thread priority policy
4017   prio_init();
4018 
4019   if (UseNUMA && !ForceNUMA) {
4020     UseNUMA = false; // We don't fully support this yet
4021   }
4022 
4023   if (UseNUMAInterleaving) {
4024     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4025     bool success = numa_interleaving_init();
4026     if (!success) UseNUMAInterleaving = false;
4027   }
4028 
4029   if (initSock() != JNI_OK) {
4030     return JNI_ERR;
4031   }
4032 
4033   SymbolEngine::recalc_search_path();
4034 
4035   return JNI_OK;
4036 }
4037 
4038 // Mark the polling page as unreadable
4039 void os::make_polling_page_unreadable(void) {
4040   DWORD old_status;
4041   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4042                       PAGE_NOACCESS, &old_status)) {
4043     fatal("Could not disable polling page");
4044   }
4045 }
4046 
4047 // Mark the polling page as readable
4048 void os::make_polling_page_readable(void) {
4049   DWORD old_status;
4050   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4051                       PAGE_READONLY, &old_status)) {
4052     fatal("Could not enable polling page");
4053   }
4054 }
4055 
4056 
4057 int os::stat(const char *path, struct stat *sbuf) {
4058   char pathbuf[MAX_PATH];
4059   if (strlen(path) > MAX_PATH - 1) {
4060     errno = ENAMETOOLONG;
4061     return -1;
4062   }
4063   os::native_path(strcpy(pathbuf, path));
4064   int ret = ::stat(pathbuf, sbuf);
4065   if (sbuf != NULL && UseUTCFileTimestamp) {
4066     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4067     // the system timezone and so can return different values for the
4068     // same file if/when daylight savings time changes.  This adjustment
4069     // makes sure the same timestamp is returned regardless of the TZ.
4070     //
4071     // See:
4072     // http://msdn.microsoft.com/library/
4073     //   default.asp?url=/library/en-us/sysinfo/base/
4074     //   time_zone_information_str.asp
4075     // and
4076     // http://msdn.microsoft.com/library/default.asp?url=
4077     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4078     //
4079     // NOTE: there is a insidious bug here:  If the timezone is changed
4080     // after the call to stat() but before 'GetTimeZoneInformation()', then
4081     // the adjustment we do here will be wrong and we'll return the wrong
4082     // value (which will likely end up creating an invalid class data
4083     // archive).  Absent a better API for this, or some time zone locking
4084     // mechanism, we'll have to live with this risk.
4085     TIME_ZONE_INFORMATION tz;
4086     DWORD tzid = GetTimeZoneInformation(&tz);
4087     int daylightBias =
4088       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4089     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4090   }
4091   return ret;
4092 }
4093 
4094 
4095 #define FT2INT64(ft) \
4096   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4097 
4098 
4099 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4100 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4101 // of a thread.
4102 //
4103 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4104 // the fast estimate available on the platform.
4105 
4106 // current_thread_cpu_time() is not optimized for Windows yet
4107 jlong os::current_thread_cpu_time() {
4108   // return user + sys since the cost is the same
4109   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4110 }
4111 
4112 jlong os::thread_cpu_time(Thread* thread) {
4113   // consistent with what current_thread_cpu_time() returns.
4114   return os::thread_cpu_time(thread, true /* user+sys */);
4115 }
4116 
4117 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4118   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4119 }
4120 
4121 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4122   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4123   // If this function changes, os::is_thread_cpu_time_supported() should too
4124   FILETIME CreationTime;
4125   FILETIME ExitTime;
4126   FILETIME KernelTime;
4127   FILETIME UserTime;
4128 
4129   if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4130                       &ExitTime, &KernelTime, &UserTime) == 0) {
4131     return -1;
4132   } else if (user_sys_cpu_time) {
4133     return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4134   } else {
4135     return FT2INT64(UserTime) * 100;
4136   }
4137 }
4138 
4139 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4140   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4141   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4142   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4143   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4144 }
4145 
4146 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4147   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4148   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4149   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4150   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4151 }
4152 
4153 bool os::is_thread_cpu_time_supported() {
4154   // see os::thread_cpu_time
4155   FILETIME CreationTime;
4156   FILETIME ExitTime;
4157   FILETIME KernelTime;
4158   FILETIME UserTime;
4159 
4160   if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4161                       &KernelTime, &UserTime) == 0) {
4162     return false;
4163   } else {
4164     return true;
4165   }
4166 }
4167 
4168 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4169 // It does have primitives (PDH API) to get CPU usage and run queue length.
4170 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4171 // If we wanted to implement loadavg on Windows, we have a few options:
4172 //
4173 // a) Query CPU usage and run queue length and "fake" an answer by
4174 //    returning the CPU usage if it's under 100%, and the run queue
4175 //    length otherwise.  It turns out that querying is pretty slow
4176 //    on Windows, on the order of 200 microseconds on a fast machine.
4177 //    Note that on the Windows the CPU usage value is the % usage
4178 //    since the last time the API was called (and the first call
4179 //    returns 100%), so we'd have to deal with that as well.
4180 //
4181 // b) Sample the "fake" answer using a sampling thread and store
4182 //    the answer in a global variable.  The call to loadavg would
4183 //    just return the value of the global, avoiding the slow query.
4184 //
4185 // c) Sample a better answer using exponential decay to smooth the
4186 //    value.  This is basically the algorithm used by UNIX kernels.
4187 //
4188 // Note that sampling thread starvation could affect both (b) and (c).
4189 int os::loadavg(double loadavg[], int nelem) {
4190   return -1;
4191 }
4192 
4193 
4194 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4195 bool os::dont_yield() {
4196   return DontYieldALot;
4197 }
4198 
4199 // This method is a slightly reworked copy of JDK's sysOpen
4200 // from src/windows/hpi/src/sys_api_md.c
4201 
4202 int os::open(const char *path, int oflag, int mode) {
4203   char pathbuf[MAX_PATH];
4204 
4205   if (strlen(path) > MAX_PATH - 1) {
4206     errno = ENAMETOOLONG;
4207     return -1;
4208   }
4209   os::native_path(strcpy(pathbuf, path));
4210   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4211 }
4212 
4213 FILE* os::open(int fd, const char* mode) {
4214   return ::_fdopen(fd, mode);
4215 }
4216 
4217 // Is a (classpath) directory empty?
4218 bool os::dir_is_empty(const char* path) {
4219   WIN32_FIND_DATA fd;
4220   HANDLE f = FindFirstFile(path, &fd);
4221   if (f == INVALID_HANDLE_VALUE) {
4222     return true;
4223   }
4224   FindClose(f);
4225   return false;
4226 }
4227 
4228 // create binary file, rewriting existing file if required
4229 int os::create_binary_file(const char* path, bool rewrite_existing) {
4230   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4231   if (!rewrite_existing) {
4232     oflags |= _O_EXCL;
4233   }
4234   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4235 }
4236 
4237 // return current position of file pointer
4238 jlong os::current_file_offset(int fd) {
4239   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4240 }
4241 
4242 // move file pointer to the specified offset
4243 jlong os::seek_to_file_offset(int fd, jlong offset) {
4244   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4245 }
4246 
4247 
4248 jlong os::lseek(int fd, jlong offset, int whence) {
4249   return (jlong) ::_lseeki64(fd, offset, whence);
4250 }
4251 
4252 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4253   OVERLAPPED ov;
4254   DWORD nread;
4255   BOOL result;
4256 
4257   ZeroMemory(&ov, sizeof(ov));
4258   ov.Offset = (DWORD)offset;
4259   ov.OffsetHigh = (DWORD)(offset >> 32);
4260 
4261   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4262 
4263   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4264 
4265   return result ? nread : 0;
4266 }
4267 
4268 
4269 // This method is a slightly reworked copy of JDK's sysNativePath
4270 // from src/windows/hpi/src/path_md.c
4271 
4272 // Convert a pathname to native format.  On win32, this involves forcing all
4273 // separators to be '\\' rather than '/' (both are legal inputs, but Win95
4274 // sometimes rejects '/') and removing redundant separators.  The input path is
4275 // assumed to have been converted into the character encoding used by the local
4276 // system.  Because this might be a double-byte encoding, care is taken to
4277 // treat double-byte lead characters correctly.
4278 //
4279 // This procedure modifies the given path in place, as the result is never
4280 // longer than the original.  There is no error return; this operation always
4281 // succeeds.
4282 char * os::native_path(char *path) {
4283   char *src = path, *dst = path, *end = path;
4284   char *colon = NULL;  // If a drive specifier is found, this will
4285                        // point to the colon following the drive letter
4286 
4287   // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4288   assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4289           && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4290 
4291   // Check for leading separators
4292 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4293   while (isfilesep(*src)) {
4294     src++;
4295   }
4296 
4297   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4298     // Remove leading separators if followed by drive specifier.  This
4299     // hack is necessary to support file URLs containing drive
4300     // specifiers (e.g., "file://c:/path").  As a side effect,
4301     // "/c:/path" can be used as an alternative to "c:/path".
4302     *dst++ = *src++;
4303     colon = dst;
4304     *dst++ = ':';
4305     src++;
4306   } else {
4307     src = path;
4308     if (isfilesep(src[0]) && isfilesep(src[1])) {
4309       // UNC pathname: Retain first separator; leave src pointed at
4310       // second separator so that further separators will be collapsed
4311       // into the second separator.  The result will be a pathname
4312       // beginning with "\\\\" followed (most likely) by a host name.
4313       src = dst = path + 1;
4314       path[0] = '\\';     // Force first separator to '\\'
4315     }
4316   }
4317 
4318   end = dst;
4319 
4320   // Remove redundant separators from remainder of path, forcing all
4321   // separators to be '\\' rather than '/'. Also, single byte space
4322   // characters are removed from the end of the path because those
4323   // are not legal ending characters on this operating system.
4324   //
4325   while (*src != '\0') {
4326     if (isfilesep(*src)) {
4327       *dst++ = '\\'; src++;
4328       while (isfilesep(*src)) src++;
4329       if (*src == '\0') {
4330         // Check for trailing separator
4331         end = dst;
4332         if (colon == dst - 2) break;  // "z:\\"
4333         if (dst == path + 1) break;   // "\\"
4334         if (dst == path + 2 && isfilesep(path[0])) {
4335           // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4336           // beginning of a UNC pathname.  Even though it is not, by
4337           // itself, a valid UNC pathname, we leave it as is in order
4338           // to be consistent with the path canonicalizer as well
4339           // as the win32 APIs, which treat this case as an invalid
4340           // UNC pathname rather than as an alias for the root
4341           // directory of the current drive.
4342           break;
4343         }
4344         end = --dst;  // Path does not denote a root directory, so
4345                       // remove trailing separator
4346         break;
4347       }
4348       end = dst;
4349     } else {
4350       if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4351         *dst++ = *src++;
4352         if (*src) *dst++ = *src++;
4353         end = dst;
4354       } else {  // Copy a single-byte character
4355         char c = *src++;
4356         *dst++ = c;
4357         // Space is not a legal ending character
4358         if (c != ' ') end = dst;
4359       }
4360     }
4361   }
4362 
4363   *end = '\0';
4364 
4365   // For "z:", add "." to work around a bug in the C runtime library
4366   if (colon == dst - 1) {
4367     path[2] = '.';
4368     path[3] = '\0';
4369   }
4370 
4371   return path;
4372 }
4373 
4374 // This code is a copy of JDK's sysSetLength
4375 // from src/windows/hpi/src/sys_api_md.c
4376 
4377 int os::ftruncate(int fd, jlong length) {
4378   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4379   long high = (long)(length >> 32);
4380   DWORD ret;
4381 
4382   if (h == (HANDLE)(-1)) {
4383     return -1;
4384   }
4385 
4386   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4387   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4388     return -1;
4389   }
4390 
4391   if (::SetEndOfFile(h) == FALSE) {
4392     return -1;
4393   }
4394 
4395   return 0;
4396 }
4397 
4398 int os::get_fileno(FILE* fp) {
4399   return _fileno(fp);
4400 }
4401 
4402 // This code is a copy of JDK's sysSync
4403 // from src/windows/hpi/src/sys_api_md.c
4404 // except for the legacy workaround for a bug in Win 98
4405 
4406 int os::fsync(int fd) {
4407   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4408 
4409   if ((!::FlushFileBuffers(handle)) &&
4410       (GetLastError() != ERROR_ACCESS_DENIED)) {
4411     // from winerror.h
4412     return -1;
4413   }
4414   return 0;
4415 }
4416 
4417 static int nonSeekAvailable(int, long *);
4418 static int stdinAvailable(int, long *);
4419 
4420 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4421 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4422 
4423 // This code is a copy of JDK's sysAvailable
4424 // from src/windows/hpi/src/sys_api_md.c
4425 
4426 int os::available(int fd, jlong *bytes) {
4427   jlong cur, end;
4428   struct _stati64 stbuf64;
4429 
4430   if (::_fstati64(fd, &stbuf64) >= 0) {
4431     int mode = stbuf64.st_mode;
4432     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4433       int ret;
4434       long lpbytes;
4435       if (fd == 0) {
4436         ret = stdinAvailable(fd, &lpbytes);
4437       } else {
4438         ret = nonSeekAvailable(fd, &lpbytes);
4439       }
4440       (*bytes) = (jlong)(lpbytes);
4441       return ret;
4442     }
4443     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4444       return FALSE;
4445     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4446       return FALSE;
4447     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4448       return FALSE;
4449     }
4450     *bytes = end - cur;
4451     return TRUE;
4452   } else {
4453     return FALSE;
4454   }
4455 }
4456 
4457 void os::flockfile(FILE* fp) {
4458   _lock_file(fp);
4459 }
4460 
4461 void os::funlockfile(FILE* fp) {
4462   _unlock_file(fp);
4463 }
4464 
4465 // This code is a copy of JDK's nonSeekAvailable
4466 // from src/windows/hpi/src/sys_api_md.c
4467 
4468 static int nonSeekAvailable(int fd, long *pbytes) {
4469   // This is used for available on non-seekable devices
4470   // (like both named and anonymous pipes, such as pipes
4471   //  connected to an exec'd process).
4472   // Standard Input is a special case.
4473   HANDLE han;
4474 
4475   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4476     return FALSE;
4477   }
4478 
4479   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4480     // PeekNamedPipe fails when at EOF.  In that case we
4481     // simply make *pbytes = 0 which is consistent with the
4482     // behavior we get on Solaris when an fd is at EOF.
4483     // The only alternative is to raise an Exception,
4484     // which isn't really warranted.
4485     //
4486     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4487       return FALSE;
4488     }
4489     *pbytes = 0;
4490   }
4491   return TRUE;
4492 }
4493 
4494 #define MAX_INPUT_EVENTS 2000
4495 
4496 // This code is a copy of JDK's stdinAvailable
4497 // from src/windows/hpi/src/sys_api_md.c
4498 
4499 static int stdinAvailable(int fd, long *pbytes) {
4500   HANDLE han;
4501   DWORD numEventsRead = 0;  // Number of events read from buffer
4502   DWORD numEvents = 0;      // Number of events in buffer
4503   DWORD i = 0;              // Loop index
4504   DWORD curLength = 0;      // Position marker
4505   DWORD actualLength = 0;   // Number of bytes readable
4506   BOOL error = FALSE;       // Error holder
4507   INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4508 
4509   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4510     return FALSE;
4511   }
4512 
4513   // Construct an array of input records in the console buffer
4514   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4515   if (error == 0) {
4516     return nonSeekAvailable(fd, pbytes);
4517   }
4518 
4519   // lpBuffer must fit into 64K or else PeekConsoleInput fails
4520   if (numEvents > MAX_INPUT_EVENTS) {
4521     numEvents = MAX_INPUT_EVENTS;
4522   }
4523 
4524   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4525   if (lpBuffer == NULL) {
4526     return FALSE;
4527   }
4528 
4529   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4530   if (error == 0) {
4531     os::free(lpBuffer);
4532     return FALSE;
4533   }
4534 
4535   // Examine input records for the number of bytes available
4536   for (i=0; i<numEvents; i++) {
4537     if (lpBuffer[i].EventType == KEY_EVENT) {
4538 
4539       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4540                                       &(lpBuffer[i].Event);
4541       if (keyRecord->bKeyDown == TRUE) {
4542         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4543         curLength++;
4544         if (*keyPressed == '\r') {
4545           actualLength = curLength;
4546         }
4547       }
4548     }
4549   }
4550 
4551   if (lpBuffer != NULL) {
4552     os::free(lpBuffer);
4553   }
4554 
4555   *pbytes = (long) actualLength;
4556   return TRUE;
4557 }
4558 
4559 // Map a block of memory.
4560 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4561                         char *addr, size_t bytes, bool read_only,
4562                         bool allow_exec) {
4563   HANDLE hFile;
4564   char* base;
4565 
4566   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4567                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4568   if (hFile == NULL) {
4569     log_info(os)("CreateFile() failed: GetLastError->%ld.", GetLastError());
4570     return NULL;
4571   }
4572 
4573   if (allow_exec) {
4574     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4575     // unless it comes from a PE image (which the shared archive is not.)
4576     // Even VirtualProtect refuses to give execute access to mapped memory
4577     // that was not previously executable.
4578     //
4579     // Instead, stick the executable region in anonymous memory.  Yuck.
4580     // Penalty is that ~4 pages will not be shareable - in the future
4581     // we might consider DLLizing the shared archive with a proper PE
4582     // header so that mapping executable + sharing is possible.
4583 
4584     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4585                                 PAGE_READWRITE);
4586     if (base == NULL) {
4587       log_info(os)("VirtualAlloc() failed: GetLastError->%ld.", GetLastError());
4588       CloseHandle(hFile);
4589       return NULL;
4590     }
4591 
4592     DWORD bytes_read;
4593     OVERLAPPED overlapped;
4594     overlapped.Offset = (DWORD)file_offset;
4595     overlapped.OffsetHigh = 0;
4596     overlapped.hEvent = NULL;
4597     // ReadFile guarantees that if the return value is true, the requested
4598     // number of bytes were read before returning.
4599     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4600     if (!res) {
4601       log_info(os)("ReadFile() failed: GetLastError->%ld.", GetLastError());
4602       release_memory(base, bytes);
4603       CloseHandle(hFile);
4604       return NULL;
4605     }
4606   } else {
4607     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4608                                     NULL /* file_name */);
4609     if (hMap == NULL) {
4610       log_info(os)("CreateFileMapping() failed: GetLastError->%ld.", GetLastError());
4611       CloseHandle(hFile);
4612       return NULL;
4613     }
4614 
4615     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4616     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4617                                   (DWORD)bytes, addr);
4618     if (base == NULL) {
4619       log_info(os)("MapViewOfFileEx() failed: GetLastError->%ld.", GetLastError());
4620       CloseHandle(hMap);
4621       CloseHandle(hFile);
4622       return NULL;
4623     }
4624 
4625     if (CloseHandle(hMap) == 0) {
4626       log_info(os)("CloseHandle(hMap) failed: GetLastError->%ld.", GetLastError());
4627       CloseHandle(hFile);
4628       return base;
4629     }
4630   }
4631 
4632   if (allow_exec) {
4633     DWORD old_protect;
4634     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4635     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4636 
4637     if (!res) {
4638       log_info(os)("VirtualProtect() failed: GetLastError->%ld.", GetLastError());
4639       // Don't consider this a hard error, on IA32 even if the
4640       // VirtualProtect fails, we should still be able to execute
4641       CloseHandle(hFile);
4642       return base;
4643     }
4644   }
4645 
4646   if (CloseHandle(hFile) == 0) {
4647     log_info(os)("CloseHandle(hFile) failed: GetLastError->%ld.", GetLastError());
4648     return base;
4649   }
4650 
4651   return base;
4652 }
4653 
4654 
4655 // Remap a block of memory.
4656 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4657                           char *addr, size_t bytes, bool read_only,
4658                           bool allow_exec) {
4659   // This OS does not allow existing memory maps to be remapped so we
4660   // have to unmap the memory before we remap it.
4661   if (!os::unmap_memory(addr, bytes)) {
4662     return NULL;
4663   }
4664 
4665   // There is a very small theoretical window between the unmap_memory()
4666   // call above and the map_memory() call below where a thread in native
4667   // code may be able to access an address that is no longer mapped.
4668 
4669   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4670                         read_only, allow_exec);
4671 }
4672 
4673 
4674 // Unmap a block of memory.
4675 // Returns true=success, otherwise false.
4676 
4677 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4678   MEMORY_BASIC_INFORMATION mem_info;
4679   if (VirtualQuery(addr, &mem_info, sizeof(mem_info)) == 0) {
4680     log_info(os)("VirtualQuery() failed: GetLastError->%ld.", GetLastError());
4681     return false;
4682   }
4683 
4684   // Executable memory was not mapped using CreateFileMapping/MapViewOfFileEx.
4685   // Instead, executable region was allocated using VirtualAlloc(). See
4686   // pd_map_memory() above.
4687   //
4688   // The following flags should match the 'exec_access' flages used for
4689   // VirtualProtect() in pd_map_memory().
4690   if (mem_info.Protect == PAGE_EXECUTE_READ ||
4691       mem_info.Protect == PAGE_EXECUTE_READWRITE) {
4692     return pd_release_memory(addr, bytes);
4693   }
4694 
4695   BOOL result = UnmapViewOfFile(addr);
4696   if (result == 0) {
4697     log_info(os)("UnmapViewOfFile() failed: GetLastError->%ld.", GetLastError());
4698     return false;
4699   }
4700   return true;
4701 }
4702 
4703 void os::pause() {
4704   char filename[MAX_PATH];
4705   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4706     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4707   } else {
4708     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4709   }
4710 
4711   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4712   if (fd != -1) {
4713     struct stat buf;
4714     ::close(fd);
4715     while (::stat(filename, &buf) == 0) {
4716       Sleep(100);
4717     }
4718   } else {
4719     jio_fprintf(stderr,
4720                 "Could not open pause file '%s', continuing immediately.\n", filename);
4721   }
4722 }
4723 
4724 Thread* os::ThreadCrashProtection::_protected_thread = NULL;
4725 os::ThreadCrashProtection* os::ThreadCrashProtection::_crash_protection = NULL;
4726 volatile intptr_t os::ThreadCrashProtection::_crash_mux = 0;
4727 
4728 os::ThreadCrashProtection::ThreadCrashProtection() {
4729 }
4730 
4731 // See the caveats for this class in os_windows.hpp
4732 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4733 // into this method and returns false. If no OS EXCEPTION was raised, returns
4734 // true.
4735 // The callback is supposed to provide the method that should be protected.
4736 //
4737 bool os::ThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4738 
4739   Thread::muxAcquire(&_crash_mux, "CrashProtection");
4740 
4741   _protected_thread = Thread::current_or_null();
4742   assert(_protected_thread != NULL, "Cannot crash protect a NULL thread");
4743 
4744   bool success = true;
4745   __try {
4746     _crash_protection = this;
4747     cb.call();
4748   } __except(EXCEPTION_EXECUTE_HANDLER) {
4749     // only for protection, nothing to do
4750     success = false;
4751   }
4752   _crash_protection = NULL;
4753   _protected_thread = NULL;
4754   Thread::muxRelease(&_crash_mux);
4755   return success;
4756 }
4757 
4758 // An Event wraps a win32 "CreateEvent" kernel handle.
4759 //
4760 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4761 //
4762 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4763 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4764 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4765 //     In addition, an unpark() operation might fetch the handle field, but the
4766 //     event could recycle between the fetch and the SetEvent() operation.
4767 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4768 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4769 //     on an stale but recycled handle would be harmless, but in practice this might
4770 //     confuse other non-Sun code, so it's not a viable approach.
4771 //
4772 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4773 //     with the Event.  The event handle is never closed.  This could be construed
4774 //     as handle leakage, but only up to the maximum # of threads that have been extant
4775 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4776 //     permit a process to have hundreds of thousands of open handles.
4777 //
4778 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4779 //     and release unused handles.
4780 //
4781 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4782 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
4783 //
4784 // 5.  Use an RCU-like mechanism (Read-Copy Update).
4785 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
4786 //
4787 // We use (2).
4788 //
4789 // TODO-FIXME:
4790 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4791 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4792 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
4793 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4794 //     into a single win32 CreateEvent() handle.
4795 //
4796 // Assumption:
4797 //    Only one parker can exist on an event, which is why we allocate
4798 //    them per-thread. Multiple unparkers can coexist.
4799 //
4800 // _Event transitions in park()
4801 //   -1 => -1 : illegal
4802 //    1 =>  0 : pass - return immediately
4803 //    0 => -1 : block; then set _Event to 0 before returning
4804 //
4805 // _Event transitions in unpark()
4806 //    0 => 1 : just return
4807 //    1 => 1 : just return
4808 //   -1 => either 0 or 1; must signal target thread
4809 //         That is, we can safely transition _Event from -1 to either
4810 //         0 or 1.
4811 //
4812 // _Event serves as a restricted-range semaphore.
4813 //   -1 : thread is blocked, i.e. there is a waiter
4814 //    0 : neutral: thread is running or ready,
4815 //        could have been signaled after a wait started
4816 //    1 : signaled - thread is running or ready
4817 //
4818 // Another possible encoding of _Event would be with
4819 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
4820 //
4821 
4822 int os::PlatformEvent::park(jlong Millis) {
4823   // Transitions for _Event:
4824   //   -1 => -1 : illegal
4825   //    1 =>  0 : pass - return immediately
4826   //    0 => -1 : block; then set _Event to 0 before returning
4827 
4828   guarantee(_ParkHandle != NULL , "Invariant");
4829   guarantee(Millis > 0          , "Invariant");
4830 
4831   // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4832   // the initial park() operation.
4833   // Consider: use atomic decrement instead of CAS-loop
4834 
4835   int v;
4836   for (;;) {
4837     v = _Event;
4838     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4839   }
4840   guarantee((v == 0) || (v == 1), "invariant");
4841   if (v != 0) return OS_OK;
4842 
4843   // Do this the hard way by blocking ...
4844   // TODO: consider a brief spin here, gated on the success of recent
4845   // spin attempts by this thread.
4846   //
4847   // We decompose long timeouts into series of shorter timed waits.
4848   // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4849   // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
4850   // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
4851   // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
4852   // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
4853   // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
4854   // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
4855   // for the already waited time.  This policy does not admit any new outcomes.
4856   // In the future, however, we might want to track the accumulated wait time and
4857   // adjust Millis accordingly if we encounter a spurious wakeup.
4858 
4859   const int MAXTIMEOUT = 0x10000000;
4860   DWORD rv = WAIT_TIMEOUT;
4861   while (_Event < 0 && Millis > 0) {
4862     DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
4863     if (Millis > MAXTIMEOUT) {
4864       prd = MAXTIMEOUT;
4865     }
4866     rv = ::WaitForSingleObject(_ParkHandle, prd);
4867     assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
4868     if (rv == WAIT_TIMEOUT) {
4869       Millis -= prd;
4870     }
4871   }
4872   v = _Event;
4873   _Event = 0;
4874   // see comment at end of os::PlatformEvent::park() below:
4875   OrderAccess::fence();
4876   // If we encounter a nearly simultanous timeout expiry and unpark()
4877   // we return OS_OK indicating we awoke via unpark().
4878   // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
4879   return (v >= 0) ? OS_OK : OS_TIMEOUT;
4880 }
4881 
4882 void os::PlatformEvent::park() {
4883   // Transitions for _Event:
4884   //   -1 => -1 : illegal
4885   //    1 =>  0 : pass - return immediately
4886   //    0 => -1 : block; then set _Event to 0 before returning
4887 
4888   guarantee(_ParkHandle != NULL, "Invariant");
4889   // Invariant: Only the thread associated with the Event/PlatformEvent
4890   // may call park().
4891   // Consider: use atomic decrement instead of CAS-loop
4892   int v;
4893   for (;;) {
4894     v = _Event;
4895     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4896   }
4897   guarantee((v == 0) || (v == 1), "invariant");
4898   if (v != 0) return;
4899 
4900   // Do this the hard way by blocking ...
4901   // TODO: consider a brief spin here, gated on the success of recent
4902   // spin attempts by this thread.
4903   while (_Event < 0) {
4904     DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
4905     assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
4906   }
4907 
4908   // Usually we'll find _Event == 0 at this point, but as
4909   // an optional optimization we clear it, just in case can
4910   // multiple unpark() operations drove _Event up to 1.
4911   _Event = 0;
4912   OrderAccess::fence();
4913   guarantee(_Event >= 0, "invariant");
4914 }
4915 
4916 void os::PlatformEvent::unpark() {
4917   guarantee(_ParkHandle != NULL, "Invariant");
4918 
4919   // Transitions for _Event:
4920   //    0 => 1 : just return
4921   //    1 => 1 : just return
4922   //   -1 => either 0 or 1; must signal target thread
4923   //         That is, we can safely transition _Event from -1 to either
4924   //         0 or 1.
4925   // See also: "Semaphores in Plan 9" by Mullender & Cox
4926   //
4927   // Note: Forcing a transition from "-1" to "1" on an unpark() means
4928   // that it will take two back-to-back park() calls for the owning
4929   // thread to block. This has the benefit of forcing a spurious return
4930   // from the first park() call after an unpark() call which will help
4931   // shake out uses of park() and unpark() without condition variables.
4932 
4933   if (Atomic::xchg(1, &_Event) >= 0) return;
4934 
4935   ::SetEvent(_ParkHandle);
4936 }
4937 
4938 
4939 // JSR166
4940 // -------------------------------------------------------
4941 
4942 // The Windows implementation of Park is very straightforward: Basic
4943 // operations on Win32 Events turn out to have the right semantics to
4944 // use them directly. We opportunistically resuse the event inherited
4945 // from Monitor.
4946 
4947 void Parker::park(bool isAbsolute, jlong time) {
4948   guarantee(_ParkEvent != NULL, "invariant");
4949   // First, demultiplex/decode time arguments
4950   if (time < 0) { // don't wait
4951     return;
4952   } else if (time == 0 && !isAbsolute) {
4953     time = INFINITE;
4954   } else if (isAbsolute) {
4955     time -= os::javaTimeMillis(); // convert to relative time
4956     if (time <= 0) {  // already elapsed
4957       return;
4958     }
4959   } else { // relative
4960     time /= 1000000;  // Must coarsen from nanos to millis
4961     if (time == 0) {  // Wait for the minimal time unit if zero
4962       time = 1;
4963     }
4964   }
4965 
4966   JavaThread* thread = JavaThread::current();
4967 
4968   // Don't wait if interrupted or already triggered
4969   if (Thread::is_interrupted(thread, false) ||
4970       WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
4971     ResetEvent(_ParkEvent);
4972     return;
4973   } else {
4974     ThreadBlockInVM tbivm(thread);
4975     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4976     thread->set_suspend_equivalent();
4977 
4978     WaitForSingleObject(_ParkEvent, time);
4979     ResetEvent(_ParkEvent);
4980 
4981     // If externally suspended while waiting, re-suspend
4982     if (thread->handle_special_suspend_equivalent_condition()) {
4983       thread->java_suspend_self();
4984     }
4985   }
4986 }
4987 
4988 void Parker::unpark() {
4989   guarantee(_ParkEvent != NULL, "invariant");
4990   SetEvent(_ParkEvent);
4991 }
4992 
4993 // Run the specified command in a separate process. Return its exit value,
4994 // or -1 on failure (e.g. can't create a new process).
4995 int os::fork_and_exec(char* cmd) {
4996   STARTUPINFO si;
4997   PROCESS_INFORMATION pi;
4998   DWORD exit_code;
4999 
5000   char * cmd_string;
5001   char * cmd_prefix = "cmd /C ";
5002   size_t len = strlen(cmd) + strlen(cmd_prefix) + 1;
5003   cmd_string = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtInternal);
5004   if (cmd_string == NULL) {
5005     return -1;
5006   }
5007   cmd_string[0] = '\0';
5008   strcat(cmd_string, cmd_prefix);
5009   strcat(cmd_string, cmd);
5010 
5011   // now replace all '\n' with '&'
5012   char * substring = cmd_string;
5013   while ((substring = strchr(substring, '\n')) != NULL) {
5014     substring[0] = '&';
5015     substring++;
5016   }
5017   memset(&si, 0, sizeof(si));
5018   si.cb = sizeof(si);
5019   memset(&pi, 0, sizeof(pi));
5020   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5021                             cmd_string,    // command line
5022                             NULL,   // process security attribute
5023                             NULL,   // thread security attribute
5024                             TRUE,   // inherits system handles
5025                             0,      // no creation flags
5026                             NULL,   // use parent's environment block
5027                             NULL,   // use parent's starting directory
5028                             &si,    // (in) startup information
5029                             &pi);   // (out) process information
5030 
5031   if (rslt) {
5032     // Wait until child process exits.
5033     WaitForSingleObject(pi.hProcess, INFINITE);
5034 
5035     GetExitCodeProcess(pi.hProcess, &exit_code);
5036 
5037     // Close process and thread handles.
5038     CloseHandle(pi.hProcess);
5039     CloseHandle(pi.hThread);
5040   } else {
5041     exit_code = -1;
5042   }
5043 
5044   FREE_C_HEAP_ARRAY(char, cmd_string);
5045   return (int)exit_code;
5046 }
5047 
5048 bool os::find(address addr, outputStream* st) {
5049   int offset = -1;
5050   bool result = false;
5051   char buf[256];
5052   if (os::dll_address_to_library_name(addr, buf, sizeof(buf), &offset)) {
5053     st->print(PTR_FORMAT " ", addr);
5054     if (strlen(buf) < sizeof(buf) - 1) {
5055       char* p = strrchr(buf, '\\');
5056       if (p) {
5057         st->print("%s", p + 1);
5058       } else {
5059         st->print("%s", buf);
5060       }
5061     } else {
5062         // The library name is probably truncated. Let's omit the library name.
5063         // See also JDK-8147512.
5064     }
5065     if (os::dll_address_to_function_name(addr, buf, sizeof(buf), &offset)) {
5066       st->print("::%s + 0x%x", buf, offset);
5067     }
5068     st->cr();
5069     result = true;
5070   }
5071   return result;
5072 }
5073 
5074 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5075   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5076 
5077   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5078     JavaThread* thread = JavaThread::current();
5079     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5080     address addr = (address) exceptionRecord->ExceptionInformation[1];
5081 
5082     if (os::is_memory_serialize_page(thread, addr)) {
5083       return EXCEPTION_CONTINUE_EXECUTION;
5084     }
5085   }
5086 
5087   return EXCEPTION_CONTINUE_SEARCH;
5088 }
5089 
5090 // We don't build a headless jre for Windows
5091 bool os::is_headless_jre() { return false; }
5092 
5093 static jint initSock() {
5094   WSADATA wsadata;
5095 
5096   if (WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5097     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5098                 ::GetLastError());
5099     return JNI_ERR;
5100   }
5101   return JNI_OK;
5102 }
5103 
5104 struct hostent* os::get_host_by_name(char* name) {
5105   return (struct hostent*)gethostbyname(name);
5106 }
5107 
5108 int os::socket_close(int fd) {
5109   return ::closesocket(fd);
5110 }
5111 
5112 int os::socket(int domain, int type, int protocol) {
5113   return ::socket(domain, type, protocol);
5114 }
5115 
5116 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5117   return ::connect(fd, him, len);
5118 }
5119 
5120 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5121   return ::recv(fd, buf, (int)nBytes, flags);
5122 }
5123 
5124 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5125   return ::send(fd, buf, (int)nBytes, flags);
5126 }
5127 
5128 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5129   return ::send(fd, buf, (int)nBytes, flags);
5130 }
5131 
5132 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5133 #if defined(IA32)
5134   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5135 #elif defined (AMD64)
5136   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5137 #endif
5138 
5139 // returns true if thread could be suspended,
5140 // false otherwise
5141 static bool do_suspend(HANDLE* h) {
5142   if (h != NULL) {
5143     if (SuspendThread(*h) != ~0) {
5144       return true;
5145     }
5146   }
5147   return false;
5148 }
5149 
5150 // resume the thread
5151 // calling resume on an active thread is a no-op
5152 static void do_resume(HANDLE* h) {
5153   if (h != NULL) {
5154     ResumeThread(*h);
5155   }
5156 }
5157 
5158 // retrieve a suspend/resume context capable handle
5159 // from the tid. Caller validates handle return value.
5160 void get_thread_handle_for_extended_context(HANDLE* h,
5161                                             OSThread::thread_id_t tid) {
5162   if (h != NULL) {
5163     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5164   }
5165 }
5166 
5167 // Thread sampling implementation
5168 //
5169 void os::SuspendedThreadTask::internal_do_task() {
5170   CONTEXT    ctxt;
5171   HANDLE     h = NULL;
5172 
5173   // get context capable handle for thread
5174   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5175 
5176   // sanity
5177   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5178     return;
5179   }
5180 
5181   // suspend the thread
5182   if (do_suspend(&h)) {
5183     ctxt.ContextFlags = sampling_context_flags;
5184     // get thread context
5185     GetThreadContext(h, &ctxt);
5186     SuspendedThreadTaskContext context(_thread, &ctxt);
5187     // pass context to Thread Sampling impl
5188     do_task(context);
5189     // resume thread
5190     do_resume(&h);
5191   }
5192 
5193   // close handle
5194   CloseHandle(h);
5195 }
5196 
5197 bool os::start_debugging(char *buf, int buflen) {
5198   int len = (int)strlen(buf);
5199   char *p = &buf[len];
5200 
5201   jio_snprintf(p, buflen-len,
5202              "\n\n"
5203              "Do you want to debug the problem?\n\n"
5204              "To debug, attach Visual Studio to process %d; then switch to thread 0x%x\n"
5205              "Select 'Yes' to launch Visual Studio automatically (PATH must include msdev)\n"
5206              "Otherwise, select 'No' to abort...",
5207              os::current_process_id(), os::current_thread_id());
5208 
5209   bool yes = os::message_box("Unexpected Error", buf);
5210 
5211   if (yes) {
5212     // os::breakpoint() calls DebugBreak(), which causes a breakpoint
5213     // exception. If VM is running inside a debugger, the debugger will
5214     // catch the exception. Otherwise, the breakpoint exception will reach
5215     // the default windows exception handler, which can spawn a debugger and
5216     // automatically attach to the dying VM.
5217     os::breakpoint();
5218     yes = false;
5219   }
5220   return yes;
5221 }
5222 
5223 void* os::get_default_process_handle() {
5224   return (void*)GetModuleHandle(NULL);
5225 }
5226 
5227 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5228 // which is used to find statically linked in agents.
5229 // Additionally for windows, takes into account __stdcall names.
5230 // Parameters:
5231 //            sym_name: Symbol in library we are looking for
5232 //            lib_name: Name of library to look in, NULL for shared libs.
5233 //            is_absolute_path == true if lib_name is absolute path to agent
5234 //                                     such as "C:/a/b/L.dll"
5235 //            == false if only the base name of the library is passed in
5236 //               such as "L"
5237 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5238                                     bool is_absolute_path) {
5239   char *agent_entry_name;
5240   size_t len;
5241   size_t name_len;
5242   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5243   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5244   const char *start;
5245 
5246   if (lib_name != NULL) {
5247     len = name_len = strlen(lib_name);
5248     if (is_absolute_path) {
5249       // Need to strip path, prefix and suffix
5250       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5251         lib_name = ++start;
5252       } else {
5253         // Need to check for drive prefix
5254         if ((start = strchr(lib_name, ':')) != NULL) {
5255           lib_name = ++start;
5256         }
5257       }
5258       if (len <= (prefix_len + suffix_len)) {
5259         return NULL;
5260       }
5261       lib_name += prefix_len;
5262       name_len = strlen(lib_name) - suffix_len;
5263     }
5264   }
5265   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5266   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5267   if (agent_entry_name == NULL) {
5268     return NULL;
5269   }
5270   if (lib_name != NULL) {
5271     const char *p = strrchr(sym_name, '@');
5272     if (p != NULL && p != sym_name) {
5273       // sym_name == _Agent_OnLoad@XX
5274       strncpy(agent_entry_name, sym_name, (p - sym_name));
5275       agent_entry_name[(p-sym_name)] = '\0';
5276       // agent_entry_name == _Agent_OnLoad
5277       strcat(agent_entry_name, "_");
5278       strncat(agent_entry_name, lib_name, name_len);
5279       strcat(agent_entry_name, p);
5280       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5281     } else {
5282       strcpy(agent_entry_name, sym_name);
5283       strcat(agent_entry_name, "_");
5284       strncat(agent_entry_name, lib_name, name_len);
5285     }
5286   } else {
5287     strcpy(agent_entry_name, sym_name);
5288   }
5289   return agent_entry_name;
5290 }
5291 
5292 #ifndef PRODUCT
5293 
5294 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5295 // contiguous memory block at a particular address.
5296 // The test first tries to find a good approximate address to allocate at by using the same
5297 // method to allocate some memory at any address. The test then tries to allocate memory in
5298 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5299 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5300 // the previously allocated memory is available for allocation. The only actual failure
5301 // that is reported is when the test tries to allocate at a particular location but gets a
5302 // different valid one. A NULL return value at this point is not considered an error but may
5303 // be legitimate.
5304 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5305 void TestReserveMemorySpecial_test() {
5306   if (!UseLargePages) {
5307     if (VerboseInternalVMTests) {
5308       tty->print("Skipping test because large pages are disabled");
5309     }
5310     return;
5311   }
5312   // save current value of globals
5313   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5314   bool old_use_numa_interleaving = UseNUMAInterleaving;
5315 
5316   // set globals to make sure we hit the correct code path
5317   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5318 
5319   // do an allocation at an address selected by the OS to get a good one.
5320   const size_t large_allocation_size = os::large_page_size() * 4;
5321   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5322   if (result == NULL) {
5323     if (VerboseInternalVMTests) {
5324       tty->print("Failed to allocate control block with size " SIZE_FORMAT ". Skipping remainder of test.",
5325                           large_allocation_size);
5326     }
5327   } else {
5328     os::release_memory_special(result, large_allocation_size);
5329 
5330     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5331     // we managed to get it once.
5332     const size_t expected_allocation_size = os::large_page_size();
5333     char* expected_location = result + os::large_page_size();
5334     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5335     if (actual_location == NULL) {
5336       if (VerboseInternalVMTests) {
5337         tty->print("Failed to allocate any memory at " PTR_FORMAT " size " SIZE_FORMAT ". Skipping remainder of test.",
5338                             expected_location, large_allocation_size);
5339       }
5340     } else {
5341       // release memory
5342       os::release_memory_special(actual_location, expected_allocation_size);
5343       // only now check, after releasing any memory to avoid any leaks.
5344       assert(actual_location == expected_location,
5345              "Failed to allocate memory at requested location " PTR_FORMAT " of size " SIZE_FORMAT ", is " PTR_FORMAT " instead",
5346              expected_location, expected_allocation_size, actual_location);
5347     }
5348   }
5349 
5350   // restore globals
5351   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5352   UseNUMAInterleaving = old_use_numa_interleaving;
5353 }
5354 #endif // PRODUCT
5355 
5356 /*
5357   All the defined signal names for Windows.
5358 
5359   NOTE that not all of these names are accepted by FindSignal!
5360 
5361   For various reasons some of these may be rejected at runtime.
5362 
5363   Here are the names currently accepted by a user of sun.misc.Signal with
5364   1.4.1 (ignoring potential interaction with use of chaining, etc):
5365 
5366      (LIST TBD)
5367 
5368 */
5369 int os::get_signal_number(const char* name) {
5370   static const struct {
5371     char* name;
5372     int   number;
5373   } siglabels [] =
5374     // derived from version 6.0 VC98/include/signal.h
5375   {"ABRT",      SIGABRT,        // abnormal termination triggered by abort cl
5376   "FPE",        SIGFPE,         // floating point exception
5377   "SEGV",       SIGSEGV,        // segment violation
5378   "INT",        SIGINT,         // interrupt
5379   "TERM",       SIGTERM,        // software term signal from kill
5380   "BREAK",      SIGBREAK,       // Ctrl-Break sequence
5381   "ILL",        SIGILL};        // illegal instruction
5382   for (unsigned i = 0; i < ARRAY_SIZE(siglabels); ++i) {
5383     if (strcmp(name, siglabels[i].name) == 0) {
5384       return siglabels[i].number;
5385     }
5386   }
5387   return -1;
5388 }
5389 
5390 // Fast current thread access
5391 
5392 int os::win32::_thread_ptr_offset = 0;
5393 
5394 static void call_wrapper_dummy() {}
5395 
5396 // We need to call the os_exception_wrapper once so that it sets
5397 // up the offset from FS of the thread pointer.
5398 void os::win32::initialize_thread_ptr_offset() {
5399   os::os_exception_wrapper((java_call_t)call_wrapper_dummy,
5400                            NULL, NULL, NULL, NULL);
5401 }