1 /*
   2  * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "osContainer_linux.hpp"
  42 #include "prims/jniFastGetField.hpp"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "semaphore_posix.hpp"
  64 #include "services/attachListener.hpp"
  65 #include "services/memTracker.hpp"
  66 #include "services/runtimeService.hpp"
  67 #include "utilities/align.hpp"
  68 #include "utilities/decoder.hpp"
  69 #include "utilities/defaultStream.hpp"
  70 #include "utilities/events.hpp"
  71 #include "utilities/elfFile.hpp"
  72 #include "utilities/growableArray.hpp"
  73 #include "utilities/macros.hpp"
  74 #include "utilities/vmError.hpp"
  75 
  76 // put OS-includes here
  77 # include <sys/types.h>
  78 # include <sys/mman.h>
  79 # include <sys/stat.h>
  80 # include <sys/select.h>
  81 # include <pthread.h>
  82 # include <signal.h>
  83 # include <errno.h>
  84 # include <dlfcn.h>
  85 # include <stdio.h>
  86 # include <unistd.h>
  87 # include <sys/resource.h>
  88 # include <pthread.h>
  89 # include <sys/stat.h>
  90 # include <sys/time.h>
  91 # include <sys/times.h>
  92 # include <sys/utsname.h>
  93 # include <sys/socket.h>
  94 # include <sys/wait.h>
  95 # include <pwd.h>
  96 # include <poll.h>
  97 # include <semaphore.h>
  98 # include <fcntl.h>
  99 # include <string.h>
 100 # include <syscall.h>
 101 # include <sys/sysinfo.h>
 102 # include <gnu/libc-version.h>
 103 # include <sys/ipc.h>
 104 # include <sys/shm.h>
 105 # include <link.h>
 106 # include <stdint.h>
 107 # include <inttypes.h>
 108 # include <sys/ioctl.h>
 109 
 110 #ifndef _GNU_SOURCE
 111   #define _GNU_SOURCE
 112   #include <sched.h>
 113   #undef _GNU_SOURCE
 114 #else
 115   #include <sched.h>
 116 #endif
 117 
 118 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 119 // getrusage() is prepared to handle the associated failure.
 120 #ifndef RUSAGE_THREAD
 121   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 122 #endif
 123 
 124 #define MAX_PATH    (2 * K)
 125 
 126 #define MAX_SECS 100000000
 127 
 128 // for timer info max values which include all bits
 129 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 130 
 131 #define LARGEPAGES_BIT (1 << 6)
 132 ////////////////////////////////////////////////////////////////////////////////
 133 // global variables
 134 julong os::Linux::_physical_memory = 0;
 135 
 136 address   os::Linux::_initial_thread_stack_bottom = NULL;
 137 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 138 
 139 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 140 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 141 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 142 Mutex* os::Linux::_createThread_lock = NULL;
 143 pthread_t os::Linux::_main_thread;
 144 int os::Linux::_page_size = -1;
 145 bool os::Linux::_supports_fast_thread_cpu_time = false;
 146 uint32_t os::Linux::_os_version = 0;
 147 const char * os::Linux::_glibc_version = NULL;
 148 const char * os::Linux::_libpthread_version = NULL;
 149 
 150 static jlong initial_time_count=0;
 151 
 152 static int clock_tics_per_sec = 100;
 153 
 154 // For diagnostics to print a message once. see run_periodic_checks
 155 static sigset_t check_signal_done;
 156 static bool check_signals = true;
 157 
 158 // Signal number used to suspend/resume a thread
 159 
 160 // do not use any signal number less than SIGSEGV, see 4355769
 161 static int SR_signum = SIGUSR2;
 162 sigset_t SR_sigset;
 163 
 164 // utility functions
 165 
 166 static int SR_initialize();
 167 
 168 julong os::available_memory() {
 169   return Linux::available_memory();
 170 }
 171 
 172 julong os::Linux::available_memory() {
 173   // values in struct sysinfo are "unsigned long"
 174   struct sysinfo si;
 175   julong avail_mem;
 176 
 177   if (OSContainer::is_containerized()) {
 178     jlong mem_limit, mem_usage;
 179     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 180       if ((mem_usage = OSContainer::memory_usage_in_bytes()) > 0) {
 181         if (mem_limit > mem_usage) {
 182           avail_mem = (julong)mem_limit - (julong)mem_usage;
 183         } else {
 184           avail_mem = 0;
 185         }
 186         log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem);
 187         return avail_mem;
 188       } else {
 189         log_debug(os,container)("container memory usage call failed: " JLONG_FORMAT, mem_usage);
 190       }
 191     } else {
 192       log_debug(os,container)("container memory unlimited or failed: " JLONG_FORMAT, mem_limit);
 193     }
 194   }
 195 
 196   sysinfo(&si);
 197   avail_mem = (julong)si.freeram * si.mem_unit;
 198   log_trace(os)("available memory: " JULONG_FORMAT, avail_mem);
 199   return avail_mem;
 200 }
 201 
 202 julong os::physical_memory() {
 203   if (OSContainer::is_containerized()) {
 204     jlong mem_limit;
 205     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 206       log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit);
 207       return (julong)mem_limit;
 208     } else {
 209       if (mem_limit == OSCONTAINER_ERROR) {
 210         log_debug(os,container)("container memory limit call failed");
 211       }
 212       if (mem_limit == -1) {
 213         log_debug(os,container)("container memory unlimited, using host value");
 214       }
 215     }
 216   }
 217 
 218   jlong phys_mem = Linux::physical_memory();
 219   log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem);
 220   return phys_mem;
 221 }
 222 
 223 // Return true if user is running as root.
 224 
 225 bool os::have_special_privileges() {
 226   static bool init = false;
 227   static bool privileges = false;
 228   if (!init) {
 229     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 230     init = true;
 231   }
 232   return privileges;
 233 }
 234 
 235 
 236 #ifndef SYS_gettid
 237 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 238   #ifdef __ia64__
 239     #define SYS_gettid 1105
 240   #else
 241     #ifdef __i386__
 242       #define SYS_gettid 224
 243     #else
 244       #ifdef __amd64__
 245         #define SYS_gettid 186
 246       #else
 247         #ifdef __sparc__
 248           #define SYS_gettid 143
 249         #else
 250           #error define gettid for the arch
 251         #endif
 252       #endif
 253     #endif
 254   #endif
 255 #endif
 256 
 257 
 258 // pid_t gettid()
 259 //
 260 // Returns the kernel thread id of the currently running thread. Kernel
 261 // thread id is used to access /proc.
 262 pid_t os::Linux::gettid() {
 263   int rslt = syscall(SYS_gettid);
 264   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 265   return (pid_t)rslt;
 266 }
 267 
 268 // Most versions of linux have a bug where the number of processors are
 269 // determined by looking at the /proc file system.  In a chroot environment,
 270 // the system call returns 1.  This causes the VM to act as if it is
 271 // a single processor and elide locking (see is_MP() call).
 272 static bool unsafe_chroot_detected = false;
 273 static const char *unstable_chroot_error = "/proc file system not found.\n"
 274                      "Java may be unstable running multithreaded in a chroot "
 275                      "environment on Linux when /proc filesystem is not mounted.";
 276 
 277 void os::Linux::initialize_system_info() {
 278   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 279   if (processor_count() == 1) {
 280     pid_t pid = os::Linux::gettid();
 281     char fname[32];
 282     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 283     FILE *fp = fopen(fname, "r");
 284     if (fp == NULL) {
 285       unsafe_chroot_detected = true;
 286     } else {
 287       fclose(fp);
 288     }
 289   }
 290   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 291   assert(processor_count() > 0, "linux error");
 292 }
 293 
 294 void os::init_system_properties_values() {
 295   // The next steps are taken in the product version:
 296   //
 297   // Obtain the JAVA_HOME value from the location of libjvm.so.
 298   // This library should be located at:
 299   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 300   //
 301   // If "/jre/lib/" appears at the right place in the path, then we
 302   // assume libjvm.so is installed in a JDK and we use this path.
 303   //
 304   // Otherwise exit with message: "Could not create the Java virtual machine."
 305   //
 306   // The following extra steps are taken in the debugging version:
 307   //
 308   // If "/jre/lib/" does NOT appear at the right place in the path
 309   // instead of exit check for $JAVA_HOME environment variable.
 310   //
 311   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 312   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 313   // it looks like libjvm.so is installed there
 314   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 315   //
 316   // Otherwise exit.
 317   //
 318   // Important note: if the location of libjvm.so changes this
 319   // code needs to be changed accordingly.
 320 
 321   // See ld(1):
 322   //      The linker uses the following search paths to locate required
 323   //      shared libraries:
 324   //        1: ...
 325   //        ...
 326   //        7: The default directories, normally /lib and /usr/lib.
 327 #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 328   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 329 #else
 330   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 331 #endif
 332 
 333 // Base path of extensions installed on the system.
 334 #define SYS_EXT_DIR     "/usr/java/packages"
 335 #define EXTENSIONS_DIR  "/lib/ext"
 336 
 337   // Buffer that fits several sprintfs.
 338   // Note that the space for the colon and the trailing null are provided
 339   // by the nulls included by the sizeof operator.
 340   const size_t bufsize =
 341     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 342          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 343   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 344 
 345   // sysclasspath, java_home, dll_dir
 346   {
 347     char *pslash;
 348     os::jvm_path(buf, bufsize);
 349 
 350     // Found the full path to libjvm.so.
 351     // Now cut the path to <java_home>/jre if we can.
 352     pslash = strrchr(buf, '/');
 353     if (pslash != NULL) {
 354       *pslash = '\0';            // Get rid of /libjvm.so.
 355     }
 356     pslash = strrchr(buf, '/');
 357     if (pslash != NULL) {
 358       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 359     }
 360     Arguments::set_dll_dir(buf);
 361 
 362     if (pslash != NULL) {
 363       pslash = strrchr(buf, '/');
 364       if (pslash != NULL) {
 365         *pslash = '\0';        // Get rid of /lib.
 366       }
 367     }
 368     Arguments::set_java_home(buf);
 369     set_boot_path('/', ':');
 370   }
 371 
 372   // Where to look for native libraries.
 373   //
 374   // Note: Due to a legacy implementation, most of the library path
 375   // is set in the launcher. This was to accomodate linking restrictions
 376   // on legacy Linux implementations (which are no longer supported).
 377   // Eventually, all the library path setting will be done here.
 378   //
 379   // However, to prevent the proliferation of improperly built native
 380   // libraries, the new path component /usr/java/packages is added here.
 381   // Eventually, all the library path setting will be done here.
 382   {
 383     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 384     // should always exist (until the legacy problem cited above is
 385     // addressed).
 386     const char *v = ::getenv("LD_LIBRARY_PATH");
 387     const char *v_colon = ":";
 388     if (v == NULL) { v = ""; v_colon = ""; }
 389     // That's +1 for the colon and +1 for the trailing '\0'.
 390     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 391                                                      strlen(v) + 1 +
 392                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 393                                                      mtInternal);
 394     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 395     Arguments::set_library_path(ld_library_path);
 396     FREE_C_HEAP_ARRAY(char, ld_library_path);
 397   }
 398 
 399   // Extensions directories.
 400   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 401   Arguments::set_ext_dirs(buf);
 402 
 403   FREE_C_HEAP_ARRAY(char, buf);
 404 
 405 #undef DEFAULT_LIBPATH
 406 #undef SYS_EXT_DIR
 407 #undef EXTENSIONS_DIR
 408 }
 409 
 410 ////////////////////////////////////////////////////////////////////////////////
 411 // breakpoint support
 412 
 413 void os::breakpoint() {
 414   BREAKPOINT;
 415 }
 416 
 417 extern "C" void breakpoint() {
 418   // use debugger to set breakpoint here
 419 }
 420 
 421 ////////////////////////////////////////////////////////////////////////////////
 422 // signal support
 423 
 424 debug_only(static bool signal_sets_initialized = false);
 425 static sigset_t unblocked_sigs, vm_sigs;
 426 
 427 bool os::Linux::is_sig_ignored(int sig) {
 428   struct sigaction oact;
 429   sigaction(sig, (struct sigaction*)NULL, &oact);
 430   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 431                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 432   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 433     return true;
 434   } else {
 435     return false;
 436   }
 437 }
 438 
 439 void os::Linux::signal_sets_init() {
 440   // Should also have an assertion stating we are still single-threaded.
 441   assert(!signal_sets_initialized, "Already initialized");
 442   // Fill in signals that are necessarily unblocked for all threads in
 443   // the VM. Currently, we unblock the following signals:
 444   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 445   //                         by -Xrs (=ReduceSignalUsage));
 446   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 447   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 448   // the dispositions or masks wrt these signals.
 449   // Programs embedding the VM that want to use the above signals for their
 450   // own purposes must, at this time, use the "-Xrs" option to prevent
 451   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 452   // (See bug 4345157, and other related bugs).
 453   // In reality, though, unblocking these signals is really a nop, since
 454   // these signals are not blocked by default.
 455   sigemptyset(&unblocked_sigs);
 456   sigaddset(&unblocked_sigs, SIGILL);
 457   sigaddset(&unblocked_sigs, SIGSEGV);
 458   sigaddset(&unblocked_sigs, SIGBUS);
 459   sigaddset(&unblocked_sigs, SIGFPE);
 460 #if defined(PPC64)
 461   sigaddset(&unblocked_sigs, SIGTRAP);
 462 #endif
 463   sigaddset(&unblocked_sigs, SR_signum);
 464 
 465   if (!ReduceSignalUsage) {
 466     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 467       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 468     }
 469     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 470       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 471     }
 472     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 473       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 474     }
 475   }
 476   // Fill in signals that are blocked by all but the VM thread.
 477   sigemptyset(&vm_sigs);
 478   if (!ReduceSignalUsage) {
 479     sigaddset(&vm_sigs, BREAK_SIGNAL);
 480   }
 481   debug_only(signal_sets_initialized = true);
 482 
 483 }
 484 
 485 // These are signals that are unblocked while a thread is running Java.
 486 // (For some reason, they get blocked by default.)
 487 sigset_t* os::Linux::unblocked_signals() {
 488   assert(signal_sets_initialized, "Not initialized");
 489   return &unblocked_sigs;
 490 }
 491 
 492 // These are the signals that are blocked while a (non-VM) thread is
 493 // running Java. Only the VM thread handles these signals.
 494 sigset_t* os::Linux::vm_signals() {
 495   assert(signal_sets_initialized, "Not initialized");
 496   return &vm_sigs;
 497 }
 498 
 499 void os::Linux::hotspot_sigmask(Thread* thread) {
 500 
 501   //Save caller's signal mask before setting VM signal mask
 502   sigset_t caller_sigmask;
 503   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 504 
 505   OSThread* osthread = thread->osthread();
 506   osthread->set_caller_sigmask(caller_sigmask);
 507 
 508   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 509 
 510   if (!ReduceSignalUsage) {
 511     if (thread->is_VM_thread()) {
 512       // Only the VM thread handles BREAK_SIGNAL ...
 513       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 514     } else {
 515       // ... all other threads block BREAK_SIGNAL
 516       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 517     }
 518   }
 519 }
 520 
 521 //////////////////////////////////////////////////////////////////////////////
 522 // detecting pthread library
 523 
 524 void os::Linux::libpthread_init() {
 525   // Save glibc and pthread version strings.
 526 #if !defined(_CS_GNU_LIBC_VERSION) || \
 527     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 528   #error "glibc too old (< 2.3.2)"
 529 #endif
 530 
 531   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 532   assert(n > 0, "cannot retrieve glibc version");
 533   char *str = (char *)malloc(n, mtInternal);
 534   confstr(_CS_GNU_LIBC_VERSION, str, n);
 535   os::Linux::set_glibc_version(str);
 536 
 537   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 538   assert(n > 0, "cannot retrieve pthread version");
 539   str = (char *)malloc(n, mtInternal);
 540   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 541   os::Linux::set_libpthread_version(str);
 542 }
 543 
 544 /////////////////////////////////////////////////////////////////////////////
 545 // thread stack expansion
 546 
 547 // os::Linux::manually_expand_stack() takes care of expanding the thread
 548 // stack. Note that this is normally not needed: pthread stacks allocate
 549 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 550 // committed. Therefore it is not necessary to expand the stack manually.
 551 //
 552 // Manually expanding the stack was historically needed on LinuxThreads
 553 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 554 // it is kept to deal with very rare corner cases:
 555 //
 556 // For one, user may run the VM on an own implementation of threads
 557 // whose stacks are - like the old LinuxThreads - implemented using
 558 // mmap(MAP_GROWSDOWN).
 559 //
 560 // Also, this coding may be needed if the VM is running on the primordial
 561 // thread. Normally we avoid running on the primordial thread; however,
 562 // user may still invoke the VM on the primordial thread.
 563 //
 564 // The following historical comment describes the details about running
 565 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 566 
 567 
 568 // Force Linux kernel to expand current thread stack. If "bottom" is close
 569 // to the stack guard, caller should block all signals.
 570 //
 571 // MAP_GROWSDOWN:
 572 //   A special mmap() flag that is used to implement thread stacks. It tells
 573 //   kernel that the memory region should extend downwards when needed. This
 574 //   allows early versions of LinuxThreads to only mmap the first few pages
 575 //   when creating a new thread. Linux kernel will automatically expand thread
 576 //   stack as needed (on page faults).
 577 //
 578 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 579 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 580 //   region, it's hard to tell if the fault is due to a legitimate stack
 581 //   access or because of reading/writing non-exist memory (e.g. buffer
 582 //   overrun). As a rule, if the fault happens below current stack pointer,
 583 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 584 //   application (see Linux kernel fault.c).
 585 //
 586 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 587 //   stack overflow detection.
 588 //
 589 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 590 //   not use MAP_GROWSDOWN.
 591 //
 592 // To get around the problem and allow stack banging on Linux, we need to
 593 // manually expand thread stack after receiving the SIGSEGV.
 594 //
 595 // There are two ways to expand thread stack to address "bottom", we used
 596 // both of them in JVM before 1.5:
 597 //   1. adjust stack pointer first so that it is below "bottom", and then
 598 //      touch "bottom"
 599 //   2. mmap() the page in question
 600 //
 601 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 602 // if current sp is already near the lower end of page 101, and we need to
 603 // call mmap() to map page 100, it is possible that part of the mmap() frame
 604 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 605 // That will destroy the mmap() frame and cause VM to crash.
 606 //
 607 // The following code works by adjusting sp first, then accessing the "bottom"
 608 // page to force a page fault. Linux kernel will then automatically expand the
 609 // stack mapping.
 610 //
 611 // _expand_stack_to() assumes its frame size is less than page size, which
 612 // should always be true if the function is not inlined.
 613 
 614 static void NOINLINE _expand_stack_to(address bottom) {
 615   address sp;
 616   size_t size;
 617   volatile char *p;
 618 
 619   // Adjust bottom to point to the largest address within the same page, it
 620   // gives us a one-page buffer if alloca() allocates slightly more memory.
 621   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 622   bottom += os::Linux::page_size() - 1;
 623 
 624   // sp might be slightly above current stack pointer; if that's the case, we
 625   // will alloca() a little more space than necessary, which is OK. Don't use
 626   // os::current_stack_pointer(), as its result can be slightly below current
 627   // stack pointer, causing us to not alloca enough to reach "bottom".
 628   sp = (address)&sp;
 629 
 630   if (sp > bottom) {
 631     size = sp - bottom;
 632     p = (volatile char *)alloca(size);
 633     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 634     p[0] = '\0';
 635   }
 636 }
 637 
 638 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 639   assert(t!=NULL, "just checking");
 640   assert(t->osthread()->expanding_stack(), "expand should be set");
 641   assert(t->stack_base() != NULL, "stack_base was not initialized");
 642 
 643   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 644     sigset_t mask_all, old_sigset;
 645     sigfillset(&mask_all);
 646     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 647     _expand_stack_to(addr);
 648     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 649     return true;
 650   }
 651   return false;
 652 }
 653 
 654 //////////////////////////////////////////////////////////////////////////////
 655 // create new thread
 656 
 657 // Thread start routine for all newly created threads
 658 static void *thread_native_entry(Thread *thread) {
 659   // Try to randomize the cache line index of hot stack frames.
 660   // This helps when threads of the same stack traces evict each other's
 661   // cache lines. The threads can be either from the same JVM instance, or
 662   // from different JVM instances. The benefit is especially true for
 663   // processors with hyperthreading technology.
 664   static int counter = 0;
 665   int pid = os::current_process_id();
 666   alloca(((pid ^ counter++) & 7) * 128);
 667 
 668   thread->initialize_thread_current();
 669 
 670   OSThread* osthread = thread->osthread();
 671   Monitor* sync = osthread->startThread_lock();
 672 
 673   osthread->set_thread_id(os::current_thread_id());
 674 
 675   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 676     os::current_thread_id(), (uintx) pthread_self());
 677 
 678   if (UseNUMA) {
 679     int lgrp_id = os::numa_get_group_id();
 680     if (lgrp_id != -1) {
 681       thread->set_lgrp_id(lgrp_id);
 682     }
 683   }
 684   // initialize signal mask for this thread
 685   os::Linux::hotspot_sigmask(thread);
 686 
 687   // initialize floating point control register
 688   os::Linux::init_thread_fpu_state();
 689 
 690   // handshaking with parent thread
 691   {
 692     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 693 
 694     // notify parent thread
 695     osthread->set_state(INITIALIZED);
 696     sync->notify_all();
 697 
 698     // wait until os::start_thread()
 699     while (osthread->get_state() == INITIALIZED) {
 700       sync->wait(Mutex::_no_safepoint_check_flag);
 701     }
 702   }
 703 
 704   // call one more level start routine
 705   thread->run();
 706 
 707   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 708     os::current_thread_id(), (uintx) pthread_self());
 709 
 710   // If a thread has not deleted itself ("delete this") as part of its
 711   // termination sequence, we have to ensure thread-local-storage is
 712   // cleared before we actually terminate. No threads should ever be
 713   // deleted asynchronously with respect to their termination.
 714   if (Thread::current_or_null_safe() != NULL) {
 715     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 716     thread->clear_thread_current();
 717   }
 718 
 719   return 0;
 720 }
 721 
 722 bool os::create_thread(Thread* thread, ThreadType thr_type,
 723                        size_t req_stack_size) {
 724   assert(thread->osthread() == NULL, "caller responsible");
 725 
 726   // Allocate the OSThread object
 727   OSThread* osthread = new OSThread(NULL, NULL);
 728   if (osthread == NULL) {
 729     return false;
 730   }
 731 
 732   // set the correct thread state
 733   osthread->set_thread_type(thr_type);
 734 
 735   // Initial state is ALLOCATED but not INITIALIZED
 736   osthread->set_state(ALLOCATED);
 737 
 738   thread->set_osthread(osthread);
 739 
 740   // init thread attributes
 741   pthread_attr_t attr;
 742   pthread_attr_init(&attr);
 743   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 744 
 745   // Calculate stack size if it's not specified by caller.
 746   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 747   // In the Linux NPTL pthread implementation the guard size mechanism
 748   // is not implemented properly. The posix standard requires adding
 749   // the size of the guard pages to the stack size, instead Linux
 750   // takes the space out of 'stacksize'. Thus we adapt the requested
 751   // stack_size by the size of the guard pages to mimick proper
 752   // behaviour. However, be careful not to end up with a size
 753   // of zero due to overflow. Don't add the guard page in that case.
 754   size_t guard_size = os::Linux::default_guard_size(thr_type);
 755   if (stack_size <= SIZE_MAX - guard_size) {
 756     stack_size += guard_size;
 757   }
 758   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 759 
 760   int status = pthread_attr_setstacksize(&attr, stack_size);
 761   assert_status(status == 0, status, "pthread_attr_setstacksize");
 762 
 763   // Configure glibc guard page.
 764   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 765 
 766   ThreadState state;
 767 
 768   {
 769     pthread_t tid;
 770     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 771 
 772     char buf[64];
 773     if (ret == 0) {
 774       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 775         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 776     } else {
 777       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 778         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 779     }
 780 
 781     pthread_attr_destroy(&attr);
 782 
 783     if (ret != 0) {
 784       // Need to clean up stuff we've allocated so far
 785       thread->set_osthread(NULL);
 786       delete osthread;
 787       return false;
 788     }
 789 
 790     // Store pthread info into the OSThread
 791     osthread->set_pthread_id(tid);
 792 
 793     // Wait until child thread is either initialized or aborted
 794     {
 795       Monitor* sync_with_child = osthread->startThread_lock();
 796       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 797       while ((state = osthread->get_state()) == ALLOCATED) {
 798         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 799       }
 800     }
 801   }
 802 
 803   // Aborted due to thread limit being reached
 804   if (state == ZOMBIE) {
 805     thread->set_osthread(NULL);
 806     delete osthread;
 807     return false;
 808   }
 809 
 810   // The thread is returned suspended (in state INITIALIZED),
 811   // and is started higher up in the call chain
 812   assert(state == INITIALIZED, "race condition");
 813   return true;
 814 }
 815 
 816 /////////////////////////////////////////////////////////////////////////////
 817 // attach existing thread
 818 
 819 // bootstrap the main thread
 820 bool os::create_main_thread(JavaThread* thread) {
 821   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 822   return create_attached_thread(thread);
 823 }
 824 
 825 bool os::create_attached_thread(JavaThread* thread) {
 826 #ifdef ASSERT
 827   thread->verify_not_published();
 828 #endif
 829 
 830   // Allocate the OSThread object
 831   OSThread* osthread = new OSThread(NULL, NULL);
 832 
 833   if (osthread == NULL) {
 834     return false;
 835   }
 836 
 837   // Store pthread info into the OSThread
 838   osthread->set_thread_id(os::Linux::gettid());
 839   osthread->set_pthread_id(::pthread_self());
 840 
 841   // initialize floating point control register
 842   os::Linux::init_thread_fpu_state();
 843 
 844   // Initial thread state is RUNNABLE
 845   osthread->set_state(RUNNABLE);
 846 
 847   thread->set_osthread(osthread);
 848 
 849   if (UseNUMA) {
 850     int lgrp_id = os::numa_get_group_id();
 851     if (lgrp_id != -1) {
 852       thread->set_lgrp_id(lgrp_id);
 853     }
 854   }
 855 
 856   if (os::Linux::is_initial_thread()) {
 857     // If current thread is initial thread, its stack is mapped on demand,
 858     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 859     // the entire stack region to avoid SEGV in stack banging.
 860     // It is also useful to get around the heap-stack-gap problem on SuSE
 861     // kernel (see 4821821 for details). We first expand stack to the top
 862     // of yellow zone, then enable stack yellow zone (order is significant,
 863     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 864     // is no gap between the last two virtual memory regions.
 865 
 866     JavaThread *jt = (JavaThread *)thread;
 867     address addr = jt->stack_reserved_zone_base();
 868     assert(addr != NULL, "initialization problem?");
 869     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 870 
 871     osthread->set_expanding_stack();
 872     os::Linux::manually_expand_stack(jt, addr);
 873     osthread->clear_expanding_stack();
 874   }
 875 
 876   // initialize signal mask for this thread
 877   // and save the caller's signal mask
 878   os::Linux::hotspot_sigmask(thread);
 879 
 880   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 881     os::current_thread_id(), (uintx) pthread_self());
 882 
 883   return true;
 884 }
 885 
 886 void os::pd_start_thread(Thread* thread) {
 887   OSThread * osthread = thread->osthread();
 888   assert(osthread->get_state() != INITIALIZED, "just checking");
 889   Monitor* sync_with_child = osthread->startThread_lock();
 890   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 891   sync_with_child->notify();
 892 }
 893 
 894 // Free Linux resources related to the OSThread
 895 void os::free_thread(OSThread* osthread) {
 896   assert(osthread != NULL, "osthread not set");
 897 
 898   // We are told to free resources of the argument thread,
 899   // but we can only really operate on the current thread.
 900   assert(Thread::current()->osthread() == osthread,
 901          "os::free_thread but not current thread");
 902 
 903 #ifdef ASSERT
 904   sigset_t current;
 905   sigemptyset(&current);
 906   pthread_sigmask(SIG_SETMASK, NULL, &current);
 907   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
 908 #endif
 909 
 910   // Restore caller's signal mask
 911   sigset_t sigmask = osthread->caller_sigmask();
 912   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 913 
 914   delete osthread;
 915 }
 916 
 917 //////////////////////////////////////////////////////////////////////////////
 918 // initial thread
 919 
 920 // Check if current thread is the initial thread, similar to Solaris thr_main.
 921 bool os::Linux::is_initial_thread(void) {
 922   char dummy;
 923   // If called before init complete, thread stack bottom will be null.
 924   // Can be called if fatal error occurs before initialization.
 925   if (initial_thread_stack_bottom() == NULL) return false;
 926   assert(initial_thread_stack_bottom() != NULL &&
 927          initial_thread_stack_size()   != 0,
 928          "os::init did not locate initial thread's stack region");
 929   if ((address)&dummy >= initial_thread_stack_bottom() &&
 930       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
 931     return true;
 932   } else {
 933     return false;
 934   }
 935 }
 936 
 937 // Find the virtual memory area that contains addr
 938 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 939   FILE *fp = fopen("/proc/self/maps", "r");
 940   if (fp) {
 941     address low, high;
 942     while (!feof(fp)) {
 943       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 944         if (low <= addr && addr < high) {
 945           if (vma_low)  *vma_low  = low;
 946           if (vma_high) *vma_high = high;
 947           fclose(fp);
 948           return true;
 949         }
 950       }
 951       for (;;) {
 952         int ch = fgetc(fp);
 953         if (ch == EOF || ch == (int)'\n') break;
 954       }
 955     }
 956     fclose(fp);
 957   }
 958   return false;
 959 }
 960 
 961 // Locate initial thread stack. This special handling of initial thread stack
 962 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 963 // bogus value for the primordial process thread. While the launcher has created
 964 // the VM in a new thread since JDK 6, we still have to allow for the use of the
 965 // JNI invocation API from a primordial thread.
 966 void os::Linux::capture_initial_stack(size_t max_size) {
 967 
 968   // max_size is either 0 (which means accept OS default for thread stacks) or
 969   // a user-specified value known to be at least the minimum needed. If we
 970   // are actually on the primordial thread we can make it appear that we have a
 971   // smaller max_size stack by inserting the guard pages at that location. But we
 972   // cannot do anything to emulate a larger stack than what has been provided by
 973   // the OS or threading library. In fact if we try to use a stack greater than
 974   // what is set by rlimit then we will crash the hosting process.
 975 
 976   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
 977   // If this is "unlimited" then it will be a huge value.
 978   struct rlimit rlim;
 979   getrlimit(RLIMIT_STACK, &rlim);
 980   size_t stack_size = rlim.rlim_cur;
 981 
 982   // 6308388: a bug in ld.so will relocate its own .data section to the
 983   //   lower end of primordial stack; reduce ulimit -s value a little bit
 984   //   so we won't install guard page on ld.so's data section.
 985   stack_size -= 2 * page_size();
 986 
 987   // Try to figure out where the stack base (top) is. This is harder.
 988   //
 989   // When an application is started, glibc saves the initial stack pointer in
 990   // a global variable "__libc_stack_end", which is then used by system
 991   // libraries. __libc_stack_end should be pretty close to stack top. The
 992   // variable is available since the very early days. However, because it is
 993   // a private interface, it could disappear in the future.
 994   //
 995   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
 996   // to __libc_stack_end, it is very close to stack top, but isn't the real
 997   // stack top. Note that /proc may not exist if VM is running as a chroot
 998   // program, so reading /proc/<pid>/stat could fail. Also the contents of
 999   // /proc/<pid>/stat could change in the future (though unlikely).
1000   //
1001   // We try __libc_stack_end first. If that doesn't work, look for
1002   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1003   // as a hint, which should work well in most cases.
1004 
1005   uintptr_t stack_start;
1006 
1007   // try __libc_stack_end first
1008   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1009   if (p && *p) {
1010     stack_start = *p;
1011   } else {
1012     // see if we can get the start_stack field from /proc/self/stat
1013     FILE *fp;
1014     int pid;
1015     char state;
1016     int ppid;
1017     int pgrp;
1018     int session;
1019     int nr;
1020     int tpgrp;
1021     unsigned long flags;
1022     unsigned long minflt;
1023     unsigned long cminflt;
1024     unsigned long majflt;
1025     unsigned long cmajflt;
1026     unsigned long utime;
1027     unsigned long stime;
1028     long cutime;
1029     long cstime;
1030     long prio;
1031     long nice;
1032     long junk;
1033     long it_real;
1034     uintptr_t start;
1035     uintptr_t vsize;
1036     intptr_t rss;
1037     uintptr_t rsslim;
1038     uintptr_t scodes;
1039     uintptr_t ecode;
1040     int i;
1041 
1042     // Figure what the primordial thread stack base is. Code is inspired
1043     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1044     // followed by command name surrounded by parentheses, state, etc.
1045     char stat[2048];
1046     int statlen;
1047 
1048     fp = fopen("/proc/self/stat", "r");
1049     if (fp) {
1050       statlen = fread(stat, 1, 2047, fp);
1051       stat[statlen] = '\0';
1052       fclose(fp);
1053 
1054       // Skip pid and the command string. Note that we could be dealing with
1055       // weird command names, e.g. user could decide to rename java launcher
1056       // to "java 1.4.2 :)", then the stat file would look like
1057       //                1234 (java 1.4.2 :)) R ... ...
1058       // We don't really need to know the command string, just find the last
1059       // occurrence of ")" and then start parsing from there. See bug 4726580.
1060       char * s = strrchr(stat, ')');
1061 
1062       i = 0;
1063       if (s) {
1064         // Skip blank chars
1065         do { s++; } while (s && isspace(*s));
1066 
1067 #define _UFM UINTX_FORMAT
1068 #define _DFM INTX_FORMAT
1069 
1070         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1071         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1072         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1073                    &state,          // 3  %c
1074                    &ppid,           // 4  %d
1075                    &pgrp,           // 5  %d
1076                    &session,        // 6  %d
1077                    &nr,             // 7  %d
1078                    &tpgrp,          // 8  %d
1079                    &flags,          // 9  %lu
1080                    &minflt,         // 10 %lu
1081                    &cminflt,        // 11 %lu
1082                    &majflt,         // 12 %lu
1083                    &cmajflt,        // 13 %lu
1084                    &utime,          // 14 %lu
1085                    &stime,          // 15 %lu
1086                    &cutime,         // 16 %ld
1087                    &cstime,         // 17 %ld
1088                    &prio,           // 18 %ld
1089                    &nice,           // 19 %ld
1090                    &junk,           // 20 %ld
1091                    &it_real,        // 21 %ld
1092                    &start,          // 22 UINTX_FORMAT
1093                    &vsize,          // 23 UINTX_FORMAT
1094                    &rss,            // 24 INTX_FORMAT
1095                    &rsslim,         // 25 UINTX_FORMAT
1096                    &scodes,         // 26 UINTX_FORMAT
1097                    &ecode,          // 27 UINTX_FORMAT
1098                    &stack_start);   // 28 UINTX_FORMAT
1099       }
1100 
1101 #undef _UFM
1102 #undef _DFM
1103 
1104       if (i != 28 - 2) {
1105         assert(false, "Bad conversion from /proc/self/stat");
1106         // product mode - assume we are the initial thread, good luck in the
1107         // embedded case.
1108         warning("Can't detect initial thread stack location - bad conversion");
1109         stack_start = (uintptr_t) &rlim;
1110       }
1111     } else {
1112       // For some reason we can't open /proc/self/stat (for example, running on
1113       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1114       // most cases, so don't abort:
1115       warning("Can't detect initial thread stack location - no /proc/self/stat");
1116       stack_start = (uintptr_t) &rlim;
1117     }
1118   }
1119 
1120   // Now we have a pointer (stack_start) very close to the stack top, the
1121   // next thing to do is to figure out the exact location of stack top. We
1122   // can find out the virtual memory area that contains stack_start by
1123   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1124   // and its upper limit is the real stack top. (again, this would fail if
1125   // running inside chroot, because /proc may not exist.)
1126 
1127   uintptr_t stack_top;
1128   address low, high;
1129   if (find_vma((address)stack_start, &low, &high)) {
1130     // success, "high" is the true stack top. (ignore "low", because initial
1131     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1132     stack_top = (uintptr_t)high;
1133   } else {
1134     // failed, likely because /proc/self/maps does not exist
1135     warning("Can't detect initial thread stack location - find_vma failed");
1136     // best effort: stack_start is normally within a few pages below the real
1137     // stack top, use it as stack top, and reduce stack size so we won't put
1138     // guard page outside stack.
1139     stack_top = stack_start;
1140     stack_size -= 16 * page_size();
1141   }
1142 
1143   // stack_top could be partially down the page so align it
1144   stack_top = align_up(stack_top, page_size());
1145 
1146   // Allowed stack value is minimum of max_size and what we derived from rlimit
1147   if (max_size > 0) {
1148     _initial_thread_stack_size = MIN2(max_size, stack_size);
1149   } else {
1150     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1151     // clamp it at 8MB as we do on Solaris
1152     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1153   }
1154   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1155   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1156 
1157   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1158 
1159   if (log_is_enabled(Info, os, thread)) {
1160     // See if we seem to be on primordial process thread
1161     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1162                       uintptr_t(&rlim) < stack_top;
1163 
1164     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1165                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1166                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1167                          stack_top, intptr_t(_initial_thread_stack_bottom));
1168   }
1169 }
1170 
1171 ////////////////////////////////////////////////////////////////////////////////
1172 // time support
1173 
1174 // Time since start-up in seconds to a fine granularity.
1175 // Used by VMSelfDestructTimer and the MemProfiler.
1176 double os::elapsedTime() {
1177 
1178   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1179 }
1180 
1181 jlong os::elapsed_counter() {
1182   return javaTimeNanos() - initial_time_count;
1183 }
1184 
1185 jlong os::elapsed_frequency() {
1186   return NANOSECS_PER_SEC; // nanosecond resolution
1187 }
1188 
1189 bool os::supports_vtime() { return true; }
1190 bool os::enable_vtime()   { return false; }
1191 bool os::vtime_enabled()  { return false; }
1192 
1193 double os::elapsedVTime() {
1194   struct rusage usage;
1195   int retval = getrusage(RUSAGE_THREAD, &usage);
1196   if (retval == 0) {
1197     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1198   } else {
1199     // better than nothing, but not much
1200     return elapsedTime();
1201   }
1202 }
1203 
1204 jlong os::javaTimeMillis() {
1205   timeval time;
1206   int status = gettimeofday(&time, NULL);
1207   assert(status != -1, "linux error");
1208   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1209 }
1210 
1211 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1212   timeval time;
1213   int status = gettimeofday(&time, NULL);
1214   assert(status != -1, "linux error");
1215   seconds = jlong(time.tv_sec);
1216   nanos = jlong(time.tv_usec) * 1000;
1217 }
1218 
1219 
1220 #ifndef CLOCK_MONOTONIC
1221   #define CLOCK_MONOTONIC (1)
1222 #endif
1223 
1224 void os::Linux::clock_init() {
1225   // we do dlopen's in this particular order due to bug in linux
1226   // dynamical loader (see 6348968) leading to crash on exit
1227   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1228   if (handle == NULL) {
1229     handle = dlopen("librt.so", RTLD_LAZY);
1230   }
1231 
1232   if (handle) {
1233     int (*clock_getres_func)(clockid_t, struct timespec*) =
1234            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1235     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1236            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1237     if (clock_getres_func && clock_gettime_func) {
1238       // See if monotonic clock is supported by the kernel. Note that some
1239       // early implementations simply return kernel jiffies (updated every
1240       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1241       // for nano time (though the monotonic property is still nice to have).
1242       // It's fixed in newer kernels, however clock_getres() still returns
1243       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1244       // resolution for now. Hopefully as people move to new kernels, this
1245       // won't be a problem.
1246       struct timespec res;
1247       struct timespec tp;
1248       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1249           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1250         // yes, monotonic clock is supported
1251         _clock_gettime = clock_gettime_func;
1252         return;
1253       } else {
1254         // close librt if there is no monotonic clock
1255         dlclose(handle);
1256       }
1257     }
1258   }
1259   warning("No monotonic clock was available - timed services may " \
1260           "be adversely affected if the time-of-day clock changes");
1261 }
1262 
1263 #ifndef SYS_clock_getres
1264   #if defined(X86) || defined(PPC64) || defined(S390)
1265     #define SYS_clock_getres AMD64_ONLY(229) IA32_ONLY(266) PPC64_ONLY(247) S390_ONLY(261)
1266     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1267   #else
1268     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1269     #define sys_clock_getres(x,y)  -1
1270   #endif
1271 #else
1272   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1273 #endif
1274 
1275 void os::Linux::fast_thread_clock_init() {
1276   if (!UseLinuxPosixThreadCPUClocks) {
1277     return;
1278   }
1279   clockid_t clockid;
1280   struct timespec tp;
1281   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1282       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1283 
1284   // Switch to using fast clocks for thread cpu time if
1285   // the sys_clock_getres() returns 0 error code.
1286   // Note, that some kernels may support the current thread
1287   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1288   // returned by the pthread_getcpuclockid().
1289   // If the fast Posix clocks are supported then the sys_clock_getres()
1290   // must return at least tp.tv_sec == 0 which means a resolution
1291   // better than 1 sec. This is extra check for reliability.
1292 
1293   if (pthread_getcpuclockid_func &&
1294       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1295       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1296     _supports_fast_thread_cpu_time = true;
1297     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1298   }
1299 }
1300 
1301 jlong os::javaTimeNanos() {
1302   if (os::supports_monotonic_clock()) {
1303     struct timespec tp;
1304     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1305     assert(status == 0, "gettime error");
1306     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1307     return result;
1308   } else {
1309     timeval time;
1310     int status = gettimeofday(&time, NULL);
1311     assert(status != -1, "linux error");
1312     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1313     return 1000 * usecs;
1314   }
1315 }
1316 
1317 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1318   if (os::supports_monotonic_clock()) {
1319     info_ptr->max_value = ALL_64_BITS;
1320 
1321     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1322     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1323     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1324   } else {
1325     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1326     info_ptr->max_value = ALL_64_BITS;
1327 
1328     // gettimeofday is a real time clock so it skips
1329     info_ptr->may_skip_backward = true;
1330     info_ptr->may_skip_forward = true;
1331   }
1332 
1333   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1334 }
1335 
1336 // Return the real, user, and system times in seconds from an
1337 // arbitrary fixed point in the past.
1338 bool os::getTimesSecs(double* process_real_time,
1339                       double* process_user_time,
1340                       double* process_system_time) {
1341   struct tms ticks;
1342   clock_t real_ticks = times(&ticks);
1343 
1344   if (real_ticks == (clock_t) (-1)) {
1345     return false;
1346   } else {
1347     double ticks_per_second = (double) clock_tics_per_sec;
1348     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1349     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1350     *process_real_time = ((double) real_ticks) / ticks_per_second;
1351 
1352     return true;
1353   }
1354 }
1355 
1356 
1357 char * os::local_time_string(char *buf, size_t buflen) {
1358   struct tm t;
1359   time_t long_time;
1360   time(&long_time);
1361   localtime_r(&long_time, &t);
1362   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1363                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1364                t.tm_hour, t.tm_min, t.tm_sec);
1365   return buf;
1366 }
1367 
1368 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1369   return localtime_r(clock, res);
1370 }
1371 
1372 ////////////////////////////////////////////////////////////////////////////////
1373 // runtime exit support
1374 
1375 // Note: os::shutdown() might be called very early during initialization, or
1376 // called from signal handler. Before adding something to os::shutdown(), make
1377 // sure it is async-safe and can handle partially initialized VM.
1378 void os::shutdown() {
1379 
1380   // allow PerfMemory to attempt cleanup of any persistent resources
1381   perfMemory_exit();
1382 
1383   // needs to remove object in file system
1384   AttachListener::abort();
1385 
1386   // flush buffered output, finish log files
1387   ostream_abort();
1388 
1389   // Check for abort hook
1390   abort_hook_t abort_hook = Arguments::abort_hook();
1391   if (abort_hook != NULL) {
1392     abort_hook();
1393   }
1394 
1395 }
1396 
1397 // Note: os::abort() might be called very early during initialization, or
1398 // called from signal handler. Before adding something to os::abort(), make
1399 // sure it is async-safe and can handle partially initialized VM.
1400 void os::abort(bool dump_core, void* siginfo, const void* context) {
1401   os::shutdown();
1402   if (dump_core) {
1403 #ifndef PRODUCT
1404     fdStream out(defaultStream::output_fd());
1405     out.print_raw("Current thread is ");
1406     char buf[16];
1407     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1408     out.print_raw_cr(buf);
1409     out.print_raw_cr("Dumping core ...");
1410 #endif
1411     ::abort(); // dump core
1412   }
1413 
1414   ::exit(1);
1415 }
1416 
1417 // Die immediately, no exit hook, no abort hook, no cleanup.
1418 void os::die() {
1419   ::abort();
1420 }
1421 
1422 
1423 // This method is a copy of JDK's sysGetLastErrorString
1424 // from src/solaris/hpi/src/system_md.c
1425 
1426 size_t os::lasterror(char *buf, size_t len) {
1427   if (errno == 0)  return 0;
1428 
1429   const char *s = os::strerror(errno);
1430   size_t n = ::strlen(s);
1431   if (n >= len) {
1432     n = len - 1;
1433   }
1434   ::strncpy(buf, s, n);
1435   buf[n] = '\0';
1436   return n;
1437 }
1438 
1439 // thread_id is kernel thread id (similar to Solaris LWP id)
1440 intx os::current_thread_id() { return os::Linux::gettid(); }
1441 int os::current_process_id() {
1442   return ::getpid();
1443 }
1444 
1445 // DLL functions
1446 
1447 const char* os::dll_file_extension() { return ".so"; }
1448 
1449 // This must be hard coded because it's the system's temporary
1450 // directory not the java application's temp directory, ala java.io.tmpdir.
1451 const char* os::get_temp_directory() { return "/tmp"; }
1452 
1453 static bool file_exists(const char* filename) {
1454   struct stat statbuf;
1455   if (filename == NULL || strlen(filename) == 0) {
1456     return false;
1457   }
1458   return os::stat(filename, &statbuf) == 0;
1459 }
1460 
1461 // check if addr is inside libjvm.so
1462 bool os::address_is_in_vm(address addr) {
1463   static address libjvm_base_addr;
1464   Dl_info dlinfo;
1465 
1466   if (libjvm_base_addr == NULL) {
1467     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1468       libjvm_base_addr = (address)dlinfo.dli_fbase;
1469     }
1470     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1471   }
1472 
1473   if (dladdr((void *)addr, &dlinfo) != 0) {
1474     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1475   }
1476 
1477   return false;
1478 }
1479 
1480 bool os::dll_address_to_function_name(address addr, char *buf,
1481                                       int buflen, int *offset,
1482                                       bool demangle) {
1483   // buf is not optional, but offset is optional
1484   assert(buf != NULL, "sanity check");
1485 
1486   Dl_info dlinfo;
1487 
1488   if (dladdr((void*)addr, &dlinfo) != 0) {
1489     // see if we have a matching symbol
1490     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1491       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1492         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1493       }
1494       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1495       return true;
1496     }
1497     // no matching symbol so try for just file info
1498     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1499       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1500                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1501         return true;
1502       }
1503     }
1504   }
1505 
1506   buf[0] = '\0';
1507   if (offset != NULL) *offset = -1;
1508   return false;
1509 }
1510 
1511 struct _address_to_library_name {
1512   address addr;          // input : memory address
1513   size_t  buflen;        //         size of fname
1514   char*   fname;         // output: library name
1515   address base;          //         library base addr
1516 };
1517 
1518 static int address_to_library_name_callback(struct dl_phdr_info *info,
1519                                             size_t size, void *data) {
1520   int i;
1521   bool found = false;
1522   address libbase = NULL;
1523   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1524 
1525   // iterate through all loadable segments
1526   for (i = 0; i < info->dlpi_phnum; i++) {
1527     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1528     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1529       // base address of a library is the lowest address of its loaded
1530       // segments.
1531       if (libbase == NULL || libbase > segbase) {
1532         libbase = segbase;
1533       }
1534       // see if 'addr' is within current segment
1535       if (segbase <= d->addr &&
1536           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1537         found = true;
1538       }
1539     }
1540   }
1541 
1542   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1543   // so dll_address_to_library_name() can fall through to use dladdr() which
1544   // can figure out executable name from argv[0].
1545   if (found && info->dlpi_name && info->dlpi_name[0]) {
1546     d->base = libbase;
1547     if (d->fname) {
1548       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1549     }
1550     return 1;
1551   }
1552   return 0;
1553 }
1554 
1555 bool os::dll_address_to_library_name(address addr, char* buf,
1556                                      int buflen, int* offset) {
1557   // buf is not optional, but offset is optional
1558   assert(buf != NULL, "sanity check");
1559 
1560   Dl_info dlinfo;
1561   struct _address_to_library_name data;
1562 
1563   // There is a bug in old glibc dladdr() implementation that it could resolve
1564   // to wrong library name if the .so file has a base address != NULL. Here
1565   // we iterate through the program headers of all loaded libraries to find
1566   // out which library 'addr' really belongs to. This workaround can be
1567   // removed once the minimum requirement for glibc is moved to 2.3.x.
1568   data.addr = addr;
1569   data.fname = buf;
1570   data.buflen = buflen;
1571   data.base = NULL;
1572   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1573 
1574   if (rslt) {
1575     // buf already contains library name
1576     if (offset) *offset = addr - data.base;
1577     return true;
1578   }
1579   if (dladdr((void*)addr, &dlinfo) != 0) {
1580     if (dlinfo.dli_fname != NULL) {
1581       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1582     }
1583     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1584       *offset = addr - (address)dlinfo.dli_fbase;
1585     }
1586     return true;
1587   }
1588 
1589   buf[0] = '\0';
1590   if (offset) *offset = -1;
1591   return false;
1592 }
1593 
1594 // Loads .dll/.so and
1595 // in case of error it checks if .dll/.so was built for the
1596 // same architecture as Hotspot is running on
1597 
1598 
1599 // Remember the stack's state. The Linux dynamic linker will change
1600 // the stack to 'executable' at most once, so we must safepoint only once.
1601 bool os::Linux::_stack_is_executable = false;
1602 
1603 // VM operation that loads a library.  This is necessary if stack protection
1604 // of the Java stacks can be lost during loading the library.  If we
1605 // do not stop the Java threads, they can stack overflow before the stacks
1606 // are protected again.
1607 class VM_LinuxDllLoad: public VM_Operation {
1608  private:
1609   const char *_filename;
1610   char *_ebuf;
1611   int _ebuflen;
1612   void *_lib;
1613  public:
1614   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1615     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1616   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1617   void doit() {
1618     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1619     os::Linux::_stack_is_executable = true;
1620   }
1621   void* loaded_library() { return _lib; }
1622 };
1623 
1624 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1625   void * result = NULL;
1626   bool load_attempted = false;
1627 
1628   // Check whether the library to load might change execution rights
1629   // of the stack. If they are changed, the protection of the stack
1630   // guard pages will be lost. We need a safepoint to fix this.
1631   //
1632   // See Linux man page execstack(8) for more info.
1633   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1634     if (!ElfFile::specifies_noexecstack(filename)) {
1635       if (!is_init_completed()) {
1636         os::Linux::_stack_is_executable = true;
1637         // This is OK - No Java threads have been created yet, and hence no
1638         // stack guard pages to fix.
1639         //
1640         // This should happen only when you are building JDK7 using a very
1641         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1642         //
1643         // Dynamic loader will make all stacks executable after
1644         // this function returns, and will not do that again.
1645         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1646       } else {
1647         warning("You have loaded library %s which might have disabled stack guard. "
1648                 "The VM will try to fix the stack guard now.\n"
1649                 "It's highly recommended that you fix the library with "
1650                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1651                 filename);
1652 
1653         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1654         JavaThread *jt = JavaThread::current();
1655         if (jt->thread_state() != _thread_in_native) {
1656           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1657           // that requires ExecStack. Cannot enter safe point. Let's give up.
1658           warning("Unable to fix stack guard. Giving up.");
1659         } else {
1660           if (!LoadExecStackDllInVMThread) {
1661             // This is for the case where the DLL has an static
1662             // constructor function that executes JNI code. We cannot
1663             // load such DLLs in the VMThread.
1664             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1665           }
1666 
1667           ThreadInVMfromNative tiv(jt);
1668           debug_only(VMNativeEntryWrapper vew;)
1669 
1670           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1671           VMThread::execute(&op);
1672           if (LoadExecStackDllInVMThread) {
1673             result = op.loaded_library();
1674           }
1675           load_attempted = true;
1676         }
1677       }
1678     }
1679   }
1680 
1681   if (!load_attempted) {
1682     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1683   }
1684 
1685   if (result != NULL) {
1686     // Successful loading
1687     return result;
1688   }
1689 
1690   Elf32_Ehdr elf_head;
1691   int diag_msg_max_length=ebuflen-strlen(ebuf);
1692   char* diag_msg_buf=ebuf+strlen(ebuf);
1693 
1694   if (diag_msg_max_length==0) {
1695     // No more space in ebuf for additional diagnostics message
1696     return NULL;
1697   }
1698 
1699 
1700   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1701 
1702   if (file_descriptor < 0) {
1703     // Can't open library, report dlerror() message
1704     return NULL;
1705   }
1706 
1707   bool failed_to_read_elf_head=
1708     (sizeof(elf_head)!=
1709      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1710 
1711   ::close(file_descriptor);
1712   if (failed_to_read_elf_head) {
1713     // file i/o error - report dlerror() msg
1714     return NULL;
1715   }
1716 
1717   typedef struct {
1718     Elf32_Half    code;         // Actual value as defined in elf.h
1719     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1720     unsigned char elf_class;    // 32 or 64 bit
1721     unsigned char endianess;    // MSB or LSB
1722     char*         name;         // String representation
1723   } arch_t;
1724 
1725 #ifndef EM_486
1726   #define EM_486          6               /* Intel 80486 */
1727 #endif
1728 #ifndef EM_AARCH64
1729   #define EM_AARCH64    183               /* ARM AARCH64 */
1730 #endif
1731 
1732   static const arch_t arch_array[]={
1733     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1734     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1735     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1736     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1737     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1738     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1739     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1740     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1741 #if defined(VM_LITTLE_ENDIAN)
1742     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1743     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1744 #else
1745     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1746     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1747 #endif
1748     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1749     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1750     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1751     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1752     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1753     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1754     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1755     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1756   };
1757 
1758 #if  (defined IA32)
1759   static  Elf32_Half running_arch_code=EM_386;
1760 #elif   (defined AMD64)
1761   static  Elf32_Half running_arch_code=EM_X86_64;
1762 #elif  (defined IA64)
1763   static  Elf32_Half running_arch_code=EM_IA_64;
1764 #elif  (defined __sparc) && (defined _LP64)
1765   static  Elf32_Half running_arch_code=EM_SPARCV9;
1766 #elif  (defined __sparc) && (!defined _LP64)
1767   static  Elf32_Half running_arch_code=EM_SPARC;
1768 #elif  (defined __powerpc64__)
1769   static  Elf32_Half running_arch_code=EM_PPC64;
1770 #elif  (defined __powerpc__)
1771   static  Elf32_Half running_arch_code=EM_PPC;
1772 #elif  (defined AARCH64)
1773   static  Elf32_Half running_arch_code=EM_AARCH64;
1774 #elif  (defined ARM)
1775   static  Elf32_Half running_arch_code=EM_ARM;
1776 #elif  (defined S390)
1777   static  Elf32_Half running_arch_code=EM_S390;
1778 #elif  (defined ALPHA)
1779   static  Elf32_Half running_arch_code=EM_ALPHA;
1780 #elif  (defined MIPSEL)
1781   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1782 #elif  (defined PARISC)
1783   static  Elf32_Half running_arch_code=EM_PARISC;
1784 #elif  (defined MIPS)
1785   static  Elf32_Half running_arch_code=EM_MIPS;
1786 #elif  (defined M68K)
1787   static  Elf32_Half running_arch_code=EM_68K;
1788 #elif  (defined SH)
1789   static  Elf32_Half running_arch_code=EM_SH;
1790 #else
1791     #error Method os::dll_load requires that one of following is defined:\
1792         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc
1793 #endif
1794 
1795   // Identify compatability class for VM's architecture and library's architecture
1796   // Obtain string descriptions for architectures
1797 
1798   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1799   int running_arch_index=-1;
1800 
1801   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1802     if (running_arch_code == arch_array[i].code) {
1803       running_arch_index    = i;
1804     }
1805     if (lib_arch.code == arch_array[i].code) {
1806       lib_arch.compat_class = arch_array[i].compat_class;
1807       lib_arch.name         = arch_array[i].name;
1808     }
1809   }
1810 
1811   assert(running_arch_index != -1,
1812          "Didn't find running architecture code (running_arch_code) in arch_array");
1813   if (running_arch_index == -1) {
1814     // Even though running architecture detection failed
1815     // we may still continue with reporting dlerror() message
1816     return NULL;
1817   }
1818 
1819   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1820     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1821     return NULL;
1822   }
1823 
1824 #ifndef S390
1825   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1826     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1827     return NULL;
1828   }
1829 #endif // !S390
1830 
1831   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1832     if (lib_arch.name!=NULL) {
1833       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1834                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1835                  lib_arch.name, arch_array[running_arch_index].name);
1836     } else {
1837       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1838                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1839                  lib_arch.code,
1840                  arch_array[running_arch_index].name);
1841     }
1842   }
1843 
1844   return NULL;
1845 }
1846 
1847 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1848                                 int ebuflen) {
1849   void * result = ::dlopen(filename, RTLD_LAZY);
1850   if (result == NULL) {
1851     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1852     ebuf[ebuflen-1] = '\0';
1853   }
1854   return result;
1855 }
1856 
1857 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1858                                        int ebuflen) {
1859   void * result = NULL;
1860   if (LoadExecStackDllInVMThread) {
1861     result = dlopen_helper(filename, ebuf, ebuflen);
1862   }
1863 
1864   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1865   // library that requires an executable stack, or which does not have this
1866   // stack attribute set, dlopen changes the stack attribute to executable. The
1867   // read protection of the guard pages gets lost.
1868   //
1869   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1870   // may have been queued at the same time.
1871 
1872   if (!_stack_is_executable) {
1873     JavaThread *jt = Threads::first();
1874 
1875     while (jt) {
1876       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1877           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1878         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1879           warning("Attempt to reguard stack yellow zone failed.");
1880         }
1881       }
1882       jt = jt->next();
1883     }
1884   }
1885 
1886   return result;
1887 }
1888 
1889 void* os::dll_lookup(void* handle, const char* name) {
1890   void* res = dlsym(handle, name);
1891   return res;
1892 }
1893 
1894 void* os::get_default_process_handle() {
1895   return (void*)::dlopen(NULL, RTLD_LAZY);
1896 }
1897 
1898 static bool _print_ascii_file(const char* filename, outputStream* st) {
1899   int fd = ::open(filename, O_RDONLY);
1900   if (fd == -1) {
1901     return false;
1902   }
1903 
1904   char buf[33];
1905   int bytes;
1906   buf[32] = '\0';
1907   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1908     st->print_raw(buf, bytes);
1909   }
1910 
1911   ::close(fd);
1912 
1913   return true;
1914 }
1915 
1916 void os::print_dll_info(outputStream *st) {
1917   st->print_cr("Dynamic libraries:");
1918 
1919   char fname[32];
1920   pid_t pid = os::Linux::gettid();
1921 
1922   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1923 
1924   if (!_print_ascii_file(fname, st)) {
1925     st->print("Can not get library information for pid = %d\n", pid);
1926   }
1927 }
1928 
1929 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1930   FILE *procmapsFile = NULL;
1931 
1932   // Open the procfs maps file for the current process
1933   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1934     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1935     char line[PATH_MAX + 100];
1936 
1937     // Read line by line from 'file'
1938     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1939       u8 base, top, offset, inode;
1940       char permissions[5];
1941       char device[6];
1942       char name[PATH_MAX + 1];
1943 
1944       // Parse fields from line
1945       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1946              &base, &top, permissions, &offset, device, &inode, name);
1947 
1948       // Filter by device id '00:00' so that we only get file system mapped files.
1949       if (strcmp(device, "00:00") != 0) {
1950 
1951         // Call callback with the fields of interest
1952         if(callback(name, (address)base, (address)top, param)) {
1953           // Oops abort, callback aborted
1954           fclose(procmapsFile);
1955           return 1;
1956         }
1957       }
1958     }
1959     fclose(procmapsFile);
1960   }
1961   return 0;
1962 }
1963 
1964 void os::print_os_info_brief(outputStream* st) {
1965   os::Linux::print_distro_info(st);
1966 
1967   os::Posix::print_uname_info(st);
1968 
1969   os::Linux::print_libversion_info(st);
1970 
1971 }
1972 
1973 void os::print_os_info(outputStream* st) {
1974   st->print("OS:");
1975 
1976   os::Linux::print_distro_info(st);
1977 
1978   os::Posix::print_uname_info(st);
1979 
1980   // Print warning if unsafe chroot environment detected
1981   if (unsafe_chroot_detected) {
1982     st->print("WARNING!! ");
1983     st->print_cr("%s", unstable_chroot_error);
1984   }
1985 
1986   os::Linux::print_libversion_info(st);
1987 
1988   os::Posix::print_rlimit_info(st);
1989 
1990   os::Posix::print_load_average(st);
1991 
1992   os::Linux::print_full_memory_info(st);
1993 
1994   os::Linux::print_container_info(st);
1995 }
1996 
1997 // Try to identify popular distros.
1998 // Most Linux distributions have a /etc/XXX-release file, which contains
1999 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2000 // file that also contains the OS version string. Some have more than one
2001 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2002 // /etc/redhat-release.), so the order is important.
2003 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2004 // their own specific XXX-release file as well as a redhat-release file.
2005 // Because of this the XXX-release file needs to be searched for before the
2006 // redhat-release file.
2007 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2008 // search for redhat-release / SuSE-release needs to be before lsb-release.
2009 // Since the lsb-release file is the new standard it needs to be searched
2010 // before the older style release files.
2011 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2012 // next to last resort.  The os-release file is a new standard that contains
2013 // distribution information and the system-release file seems to be an old
2014 // standard that has been replaced by the lsb-release and os-release files.
2015 // Searching for the debian_version file is the last resort.  It contains
2016 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2017 // "Debian " is printed before the contents of the debian_version file.
2018 
2019 const char* distro_files[] = {
2020   "/etc/oracle-release",
2021   "/etc/mandriva-release",
2022   "/etc/mandrake-release",
2023   "/etc/sun-release",
2024   "/etc/redhat-release",
2025   "/etc/SuSE-release",
2026   "/etc/lsb-release",
2027   "/etc/turbolinux-release",
2028   "/etc/gentoo-release",
2029   "/etc/ltib-release",
2030   "/etc/angstrom-version",
2031   "/etc/system-release",
2032   "/etc/os-release",
2033   NULL };
2034 
2035 void os::Linux::print_distro_info(outputStream* st) {
2036   for (int i = 0;; i++) {
2037     const char* file = distro_files[i];
2038     if (file == NULL) {
2039       break;  // done
2040     }
2041     // If file prints, we found it.
2042     if (_print_ascii_file(file, st)) {
2043       return;
2044     }
2045   }
2046 
2047   if (file_exists("/etc/debian_version")) {
2048     st->print("Debian ");
2049     _print_ascii_file("/etc/debian_version", st);
2050   } else {
2051     st->print("Linux");
2052   }
2053   st->cr();
2054 }
2055 
2056 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2057   char buf[256];
2058   while (fgets(buf, sizeof(buf), fp)) {
2059     // Edit out extra stuff in expected format
2060     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2061       char* ptr = strstr(buf, "\"");  // the name is in quotes
2062       if (ptr != NULL) {
2063         ptr++; // go beyond first quote
2064         char* nl = strchr(ptr, '\"');
2065         if (nl != NULL) *nl = '\0';
2066         strncpy(distro, ptr, length);
2067       } else {
2068         ptr = strstr(buf, "=");
2069         ptr++; // go beyond equals then
2070         char* nl = strchr(ptr, '\n');
2071         if (nl != NULL) *nl = '\0';
2072         strncpy(distro, ptr, length);
2073       }
2074       return;
2075     } else if (get_first_line) {
2076       char* nl = strchr(buf, '\n');
2077       if (nl != NULL) *nl = '\0';
2078       strncpy(distro, buf, length);
2079       return;
2080     }
2081   }
2082   // print last line and close
2083   char* nl = strchr(buf, '\n');
2084   if (nl != NULL) *nl = '\0';
2085   strncpy(distro, buf, length);
2086 }
2087 
2088 static void parse_os_info(char* distro, size_t length, const char* file) {
2089   FILE* fp = fopen(file, "r");
2090   if (fp != NULL) {
2091     // if suse format, print out first line
2092     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2093     parse_os_info_helper(fp, distro, length, get_first_line);
2094     fclose(fp);
2095   }
2096 }
2097 
2098 void os::get_summary_os_info(char* buf, size_t buflen) {
2099   for (int i = 0;; i++) {
2100     const char* file = distro_files[i];
2101     if (file == NULL) {
2102       break; // ran out of distro_files
2103     }
2104     if (file_exists(file)) {
2105       parse_os_info(buf, buflen, file);
2106       return;
2107     }
2108   }
2109   // special case for debian
2110   if (file_exists("/etc/debian_version")) {
2111     strncpy(buf, "Debian ", buflen);
2112     parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2113   } else {
2114     strncpy(buf, "Linux", buflen);
2115   }
2116 }
2117 
2118 void os::Linux::print_libversion_info(outputStream* st) {
2119   // libc, pthread
2120   st->print("libc:");
2121   st->print("%s ", os::Linux::glibc_version());
2122   st->print("%s ", os::Linux::libpthread_version());
2123   st->cr();
2124 }
2125 
2126 void os::Linux::print_full_memory_info(outputStream* st) {
2127   st->print("\n/proc/meminfo:\n");
2128   _print_ascii_file("/proc/meminfo", st);
2129   st->cr();
2130 }
2131 
2132 void os::Linux::print_container_info(outputStream* st) {
2133   if (OSContainer::is_containerized()) {
2134     st->print("container (cgroup) information:\n");
2135 
2136     char *p = OSContainer::container_type();
2137     if (p == NULL)
2138       st->print("container_type() failed\n");
2139     else {
2140       st->print("container_type: %s\n", p);
2141     }
2142 
2143     p = OSContainer::cpu_cpuset_cpus();
2144     if (p == NULL)
2145       st->print("cpu_cpuset_cpus() failed\n");
2146     else {
2147       st->print("cpu_cpuset_cpus: %s\n", p);
2148       free(p);
2149     }
2150 
2151     p = OSContainer::cpu_cpuset_memory_nodes();
2152     if (p < 0)
2153       st->print("cpu_memory_nodes() failed\n");
2154     else {
2155       st->print("cpu_memory_nodes: %s\n", p);
2156       free(p);
2157     }
2158 
2159     int i = OSContainer::active_processor_count();
2160     if (i < 0)
2161       st->print("active_processor_count() failed\n");
2162     else
2163       st->print("active_processor_count: %d\n", i);
2164 
2165     i = OSContainer::cpu_quota();
2166     st->print("cpu_quota: %d\n", i);
2167 
2168     i = OSContainer::cpu_period();
2169     st->print("cpu_period: %d\n", i);
2170 
2171     i = OSContainer::cpu_shares();
2172     st->print("cpu_shares: %d\n", i);
2173 
2174     jlong j = OSContainer::memory_limit_in_bytes();
2175     st->print("memory_limit_in_bytes: " JLONG_FORMAT "\n", j);
2176 
2177     j = OSContainer::memory_and_swap_limit_in_bytes();
2178     st->print("memory_and_swap_limit_in_bytes: " JLONG_FORMAT "\n", j);
2179 
2180     j = OSContainer::memory_soft_limit_in_bytes();
2181     st->print("memory_soft_limit_in_bytes: " JLONG_FORMAT "\n", j);
2182 
2183     j = OSContainer::OSContainer::memory_usage_in_bytes();
2184     st->print("memory_usage_in_bytes: " JLONG_FORMAT "\n", j);
2185 
2186     j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2187     st->print("memory_max_usage_in_bytes: " JLONG_FORMAT "\n", j);
2188     st->cr();
2189   }
2190 }
2191 
2192 void os::print_memory_info(outputStream* st) {
2193 
2194   st->print("Memory:");
2195   st->print(" %dk page", os::vm_page_size()>>10);
2196 
2197   // values in struct sysinfo are "unsigned long"
2198   struct sysinfo si;
2199   sysinfo(&si);
2200 
2201   st->print(", physical " UINT64_FORMAT "k",
2202             os::physical_memory() >> 10);
2203   st->print("(" UINT64_FORMAT "k free)",
2204             os::available_memory() >> 10);
2205   st->print(", swap " UINT64_FORMAT "k",
2206             ((jlong)si.totalswap * si.mem_unit) >> 10);
2207   st->print("(" UINT64_FORMAT "k free)",
2208             ((jlong)si.freeswap * si.mem_unit) >> 10);
2209   st->cr();
2210 }
2211 
2212 // Print the first "model name" line and the first "flags" line
2213 // that we find and nothing more. We assume "model name" comes
2214 // before "flags" so if we find a second "model name", then the
2215 // "flags" field is considered missing.
2216 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2217 #if defined(IA32) || defined(AMD64)
2218   // Other platforms have less repetitive cpuinfo files
2219   FILE *fp = fopen("/proc/cpuinfo", "r");
2220   if (fp) {
2221     while (!feof(fp)) {
2222       if (fgets(buf, buflen, fp)) {
2223         // Assume model name comes before flags
2224         bool model_name_printed = false;
2225         if (strstr(buf, "model name") != NULL) {
2226           if (!model_name_printed) {
2227             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2228             st->print_raw(buf);
2229             model_name_printed = true;
2230           } else {
2231             // model name printed but not flags?  Odd, just return
2232             fclose(fp);
2233             return true;
2234           }
2235         }
2236         // print the flags line too
2237         if (strstr(buf, "flags") != NULL) {
2238           st->print_raw(buf);
2239           fclose(fp);
2240           return true;
2241         }
2242       }
2243     }
2244     fclose(fp);
2245   }
2246 #endif // x86 platforms
2247   return false;
2248 }
2249 
2250 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2251   // Only print the model name if the platform provides this as a summary
2252   if (!print_model_name_and_flags(st, buf, buflen)) {
2253     st->print("\n/proc/cpuinfo:\n");
2254     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2255       st->print_cr("  <Not Available>");
2256     }
2257   }
2258 }
2259 
2260 #if defined(AMD64) || defined(IA32) || defined(X32)
2261 const char* search_string = "model name";
2262 #elif defined(M68K)
2263 const char* search_string = "CPU";
2264 #elif defined(PPC64)
2265 const char* search_string = "cpu";
2266 #elif defined(S390)
2267 const char* search_string = "processor";
2268 #elif defined(SPARC)
2269 const char* search_string = "cpu";
2270 #else
2271 const char* search_string = "Processor";
2272 #endif
2273 
2274 // Parses the cpuinfo file for string representing the model name.
2275 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2276   FILE* fp = fopen("/proc/cpuinfo", "r");
2277   if (fp != NULL) {
2278     while (!feof(fp)) {
2279       char buf[256];
2280       if (fgets(buf, sizeof(buf), fp)) {
2281         char* start = strstr(buf, search_string);
2282         if (start != NULL) {
2283           char *ptr = start + strlen(search_string);
2284           char *end = buf + strlen(buf);
2285           while (ptr != end) {
2286              // skip whitespace and colon for the rest of the name.
2287              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2288                break;
2289              }
2290              ptr++;
2291           }
2292           if (ptr != end) {
2293             // reasonable string, get rid of newline and keep the rest
2294             char* nl = strchr(buf, '\n');
2295             if (nl != NULL) *nl = '\0';
2296             strncpy(cpuinfo, ptr, length);
2297             fclose(fp);
2298             return;
2299           }
2300         }
2301       }
2302     }
2303     fclose(fp);
2304   }
2305   // cpuinfo not found or parsing failed, just print generic string.  The entire
2306   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2307 #if   defined(AARCH64)
2308   strncpy(cpuinfo, "AArch64", length);
2309 #elif defined(AMD64)
2310   strncpy(cpuinfo, "x86_64", length);
2311 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2312   strncpy(cpuinfo, "ARM", length);
2313 #elif defined(IA32)
2314   strncpy(cpuinfo, "x86_32", length);
2315 #elif defined(IA64)
2316   strncpy(cpuinfo, "IA64", length);
2317 #elif defined(PPC)
2318   strncpy(cpuinfo, "PPC64", length);
2319 #elif defined(S390)
2320   strncpy(cpuinfo, "S390", length);
2321 #elif defined(SPARC)
2322   strncpy(cpuinfo, "sparcv9", length);
2323 #elif defined(ZERO_LIBARCH)
2324   strncpy(cpuinfo, ZERO_LIBARCH, length);
2325 #else
2326   strncpy(cpuinfo, "unknown", length);
2327 #endif
2328 }
2329 
2330 static void print_signal_handler(outputStream* st, int sig,
2331                                  char* buf, size_t buflen);
2332 
2333 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2334   st->print_cr("Signal Handlers:");
2335   print_signal_handler(st, SIGSEGV, buf, buflen);
2336   print_signal_handler(st, SIGBUS , buf, buflen);
2337   print_signal_handler(st, SIGFPE , buf, buflen);
2338   print_signal_handler(st, SIGPIPE, buf, buflen);
2339   print_signal_handler(st, SIGXFSZ, buf, buflen);
2340   print_signal_handler(st, SIGILL , buf, buflen);
2341   print_signal_handler(st, SR_signum, buf, buflen);
2342   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2343   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2344   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2345   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2346 #if defined(PPC64)
2347   print_signal_handler(st, SIGTRAP, buf, buflen);
2348 #endif
2349 }
2350 
2351 static char saved_jvm_path[MAXPATHLEN] = {0};
2352 
2353 // Find the full path to the current module, libjvm.so
2354 void os::jvm_path(char *buf, jint buflen) {
2355   // Error checking.
2356   if (buflen < MAXPATHLEN) {
2357     assert(false, "must use a large-enough buffer");
2358     buf[0] = '\0';
2359     return;
2360   }
2361   // Lazy resolve the path to current module.
2362   if (saved_jvm_path[0] != 0) {
2363     strcpy(buf, saved_jvm_path);
2364     return;
2365   }
2366 
2367   char dli_fname[MAXPATHLEN];
2368   bool ret = dll_address_to_library_name(
2369                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2370                                          dli_fname, sizeof(dli_fname), NULL);
2371   assert(ret, "cannot locate libjvm");
2372   char *rp = NULL;
2373   if (ret && dli_fname[0] != '\0') {
2374     rp = os::Posix::realpath(dli_fname, buf, buflen);
2375   }
2376   if (rp == NULL) {
2377     return;
2378   }
2379 
2380   if (Arguments::sun_java_launcher_is_altjvm()) {
2381     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2382     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2383     // If "/jre/lib/" appears at the right place in the string, then
2384     // assume we are installed in a JDK and we're done. Otherwise, check
2385     // for a JAVA_HOME environment variable and fix up the path so it
2386     // looks like libjvm.so is installed there (append a fake suffix
2387     // hotspot/libjvm.so).
2388     const char *p = buf + strlen(buf) - 1;
2389     for (int count = 0; p > buf && count < 5; ++count) {
2390       for (--p; p > buf && *p != '/'; --p)
2391         /* empty */ ;
2392     }
2393 
2394     if (strncmp(p, "/jre/lib/", 9) != 0) {
2395       // Look for JAVA_HOME in the environment.
2396       char* java_home_var = ::getenv("JAVA_HOME");
2397       if (java_home_var != NULL && java_home_var[0] != 0) {
2398         char* jrelib_p;
2399         int len;
2400 
2401         // Check the current module name "libjvm.so".
2402         p = strrchr(buf, '/');
2403         if (p == NULL) {
2404           return;
2405         }
2406         assert(strstr(p, "/libjvm") == p, "invalid library name");
2407 
2408         rp = os::Posix::realpath(java_home_var, buf, buflen);
2409         if (rp == NULL) {
2410           return;
2411         }
2412 
2413         // determine if this is a legacy image or modules image
2414         // modules image doesn't have "jre" subdirectory
2415         len = strlen(buf);
2416         assert(len < buflen, "Ran out of buffer room");
2417         jrelib_p = buf + len;
2418         snprintf(jrelib_p, buflen-len, "/jre/lib");
2419         if (0 != access(buf, F_OK)) {
2420           snprintf(jrelib_p, buflen-len, "/lib");
2421         }
2422 
2423         if (0 == access(buf, F_OK)) {
2424           // Use current module name "libjvm.so"
2425           len = strlen(buf);
2426           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2427         } else {
2428           // Go back to path of .so
2429           rp = os::Posix::realpath(dli_fname, buf, buflen);
2430           if (rp == NULL) {
2431             return;
2432           }
2433         }
2434       }
2435     }
2436   }
2437 
2438   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2439   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2440 }
2441 
2442 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2443   // no prefix required, not even "_"
2444 }
2445 
2446 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2447   // no suffix required
2448 }
2449 
2450 ////////////////////////////////////////////////////////////////////////////////
2451 // sun.misc.Signal support
2452 
2453 static volatile jint sigint_count = 0;
2454 
2455 static void UserHandler(int sig, void *siginfo, void *context) {
2456   // 4511530 - sem_post is serialized and handled by the manager thread. When
2457   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2458   // don't want to flood the manager thread with sem_post requests.
2459   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2460     return;
2461   }
2462 
2463   // Ctrl-C is pressed during error reporting, likely because the error
2464   // handler fails to abort. Let VM die immediately.
2465   if (sig == SIGINT && VMError::is_error_reported()) {
2466     os::die();
2467   }
2468 
2469   os::signal_notify(sig);
2470 }
2471 
2472 void* os::user_handler() {
2473   return CAST_FROM_FN_PTR(void*, UserHandler);
2474 }
2475 
2476 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2477   struct timespec ts;
2478   // Semaphore's are always associated with CLOCK_REALTIME
2479   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2480   // see unpackTime for discussion on overflow checking
2481   if (sec >= MAX_SECS) {
2482     ts.tv_sec += MAX_SECS;
2483     ts.tv_nsec = 0;
2484   } else {
2485     ts.tv_sec += sec;
2486     ts.tv_nsec += nsec;
2487     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2488       ts.tv_nsec -= NANOSECS_PER_SEC;
2489       ++ts.tv_sec; // note: this must be <= max_secs
2490     }
2491   }
2492 
2493   return ts;
2494 }
2495 
2496 extern "C" {
2497   typedef void (*sa_handler_t)(int);
2498   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2499 }
2500 
2501 void* os::signal(int signal_number, void* handler) {
2502   struct sigaction sigAct, oldSigAct;
2503 
2504   sigfillset(&(sigAct.sa_mask));
2505   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2506   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2507 
2508   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2509     // -1 means registration failed
2510     return (void *)-1;
2511   }
2512 
2513   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2514 }
2515 
2516 void os::signal_raise(int signal_number) {
2517   ::raise(signal_number);
2518 }
2519 
2520 // The following code is moved from os.cpp for making this
2521 // code platform specific, which it is by its very nature.
2522 
2523 // Will be modified when max signal is changed to be dynamic
2524 int os::sigexitnum_pd() {
2525   return NSIG;
2526 }
2527 
2528 // a counter for each possible signal value
2529 static volatile jint pending_signals[NSIG+1] = { 0 };
2530 
2531 // Linux(POSIX) specific hand shaking semaphore.
2532 static sem_t sig_sem;
2533 static PosixSemaphore sr_semaphore;
2534 
2535 void os::signal_init_pd() {
2536   // Initialize signal structures
2537   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2538 
2539   // Initialize signal semaphore
2540   ::sem_init(&sig_sem, 0, 0);
2541 }
2542 
2543 void os::signal_notify(int sig) {
2544   Atomic::inc(&pending_signals[sig]);
2545   ::sem_post(&sig_sem);
2546 }
2547 
2548 static int check_pending_signals(bool wait) {
2549   Atomic::store(0, &sigint_count);
2550   for (;;) {
2551     for (int i = 0; i < NSIG + 1; i++) {
2552       jint n = pending_signals[i];
2553       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2554         return i;
2555       }
2556     }
2557     if (!wait) {
2558       return -1;
2559     }
2560     JavaThread *thread = JavaThread::current();
2561     ThreadBlockInVM tbivm(thread);
2562 
2563     bool threadIsSuspended;
2564     do {
2565       thread->set_suspend_equivalent();
2566       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2567       ::sem_wait(&sig_sem);
2568 
2569       // were we externally suspended while we were waiting?
2570       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2571       if (threadIsSuspended) {
2572         // The semaphore has been incremented, but while we were waiting
2573         // another thread suspended us. We don't want to continue running
2574         // while suspended because that would surprise the thread that
2575         // suspended us.
2576         ::sem_post(&sig_sem);
2577 
2578         thread->java_suspend_self();
2579       }
2580     } while (threadIsSuspended);
2581   }
2582 }
2583 
2584 int os::signal_lookup() {
2585   return check_pending_signals(false);
2586 }
2587 
2588 int os::signal_wait() {
2589   return check_pending_signals(true);
2590 }
2591 
2592 ////////////////////////////////////////////////////////////////////////////////
2593 // Virtual Memory
2594 
2595 int os::vm_page_size() {
2596   // Seems redundant as all get out
2597   assert(os::Linux::page_size() != -1, "must call os::init");
2598   return os::Linux::page_size();
2599 }
2600 
2601 // Solaris allocates memory by pages.
2602 int os::vm_allocation_granularity() {
2603   assert(os::Linux::page_size() != -1, "must call os::init");
2604   return os::Linux::page_size();
2605 }
2606 
2607 // Rationale behind this function:
2608 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2609 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2610 //  samples for JITted code. Here we create private executable mapping over the code cache
2611 //  and then we can use standard (well, almost, as mapping can change) way to provide
2612 //  info for the reporting script by storing timestamp and location of symbol
2613 void linux_wrap_code(char* base, size_t size) {
2614   static volatile jint cnt = 0;
2615 
2616   if (!UseOprofile) {
2617     return;
2618   }
2619 
2620   char buf[PATH_MAX+1];
2621   int num = Atomic::add(1, &cnt);
2622 
2623   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2624            os::get_temp_directory(), os::current_process_id(), num);
2625   unlink(buf);
2626 
2627   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2628 
2629   if (fd != -1) {
2630     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2631     if (rv != (off_t)-1) {
2632       if (::write(fd, "", 1) == 1) {
2633         mmap(base, size,
2634              PROT_READ|PROT_WRITE|PROT_EXEC,
2635              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2636       }
2637     }
2638     ::close(fd);
2639     unlink(buf);
2640   }
2641 }
2642 
2643 static bool recoverable_mmap_error(int err) {
2644   // See if the error is one we can let the caller handle. This
2645   // list of errno values comes from JBS-6843484. I can't find a
2646   // Linux man page that documents this specific set of errno
2647   // values so while this list currently matches Solaris, it may
2648   // change as we gain experience with this failure mode.
2649   switch (err) {
2650   case EBADF:
2651   case EINVAL:
2652   case ENOTSUP:
2653     // let the caller deal with these errors
2654     return true;
2655 
2656   default:
2657     // Any remaining errors on this OS can cause our reserved mapping
2658     // to be lost. That can cause confusion where different data
2659     // structures think they have the same memory mapped. The worst
2660     // scenario is if both the VM and a library think they have the
2661     // same memory mapped.
2662     return false;
2663   }
2664 }
2665 
2666 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2667                                     int err) {
2668   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2669           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2670           os::strerror(err), err);
2671 }
2672 
2673 static void warn_fail_commit_memory(char* addr, size_t size,
2674                                     size_t alignment_hint, bool exec,
2675                                     int err) {
2676   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2677           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2678           alignment_hint, exec, os::strerror(err), err);
2679 }
2680 
2681 // NOTE: Linux kernel does not really reserve the pages for us.
2682 //       All it does is to check if there are enough free pages
2683 //       left at the time of mmap(). This could be a potential
2684 //       problem.
2685 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2686   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2687   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2688                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2689   if (res != (uintptr_t) MAP_FAILED) {
2690     if (UseNUMAInterleaving) {
2691       numa_make_global(addr, size);
2692     }
2693     return 0;
2694   }
2695 
2696   int err = errno;  // save errno from mmap() call above
2697 
2698   if (!recoverable_mmap_error(err)) {
2699     warn_fail_commit_memory(addr, size, exec, err);
2700     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2701   }
2702 
2703   return err;
2704 }
2705 
2706 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2707   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2708 }
2709 
2710 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2711                                   const char* mesg) {
2712   assert(mesg != NULL, "mesg must be specified");
2713   int err = os::Linux::commit_memory_impl(addr, size, exec);
2714   if (err != 0) {
2715     // the caller wants all commit errors to exit with the specified mesg:
2716     warn_fail_commit_memory(addr, size, exec, err);
2717     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2718   }
2719 }
2720 
2721 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2722 #ifndef MAP_HUGETLB
2723   #define MAP_HUGETLB 0x40000
2724 #endif
2725 
2726 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2727 #ifndef MADV_HUGEPAGE
2728   #define MADV_HUGEPAGE 14
2729 #endif
2730 
2731 int os::Linux::commit_memory_impl(char* addr, size_t size,
2732                                   size_t alignment_hint, bool exec) {
2733   int err = os::Linux::commit_memory_impl(addr, size, exec);
2734   if (err == 0) {
2735     realign_memory(addr, size, alignment_hint);
2736   }
2737   return err;
2738 }
2739 
2740 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2741                           bool exec) {
2742   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2743 }
2744 
2745 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2746                                   size_t alignment_hint, bool exec,
2747                                   const char* mesg) {
2748   assert(mesg != NULL, "mesg must be specified");
2749   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2750   if (err != 0) {
2751     // the caller wants all commit errors to exit with the specified mesg:
2752     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2753     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2754   }
2755 }
2756 
2757 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2758   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2759     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2760     // be supported or the memory may already be backed by huge pages.
2761     ::madvise(addr, bytes, MADV_HUGEPAGE);
2762   }
2763 }
2764 
2765 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2766   // This method works by doing an mmap over an existing mmaping and effectively discarding
2767   // the existing pages. However it won't work for SHM-based large pages that cannot be
2768   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2769   // small pages on top of the SHM segment. This method always works for small pages, so we
2770   // allow that in any case.
2771   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2772     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2773   }
2774 }
2775 
2776 void os::numa_make_global(char *addr, size_t bytes) {
2777   Linux::numa_interleave_memory(addr, bytes);
2778 }
2779 
2780 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2781 // bind policy to MPOL_PREFERRED for the current thread.
2782 #define USE_MPOL_PREFERRED 0
2783 
2784 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2785   // To make NUMA and large pages more robust when both enabled, we need to ease
2786   // the requirements on where the memory should be allocated. MPOL_BIND is the
2787   // default policy and it will force memory to be allocated on the specified
2788   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2789   // the specified node, but will not force it. Using this policy will prevent
2790   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2791   // free large pages.
2792   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2793   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2794 }
2795 
2796 bool os::numa_topology_changed() { return false; }
2797 
2798 size_t os::numa_get_groups_num() {
2799   // Return just the number of nodes in which it's possible to allocate memory
2800   // (in numa terminology, configured nodes).
2801   return Linux::numa_num_configured_nodes();
2802 }
2803 
2804 int os::numa_get_group_id() {
2805   int cpu_id = Linux::sched_getcpu();
2806   if (cpu_id != -1) {
2807     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2808     if (lgrp_id != -1) {
2809       return lgrp_id;
2810     }
2811   }
2812   return 0;
2813 }
2814 
2815 int os::Linux::get_existing_num_nodes() {
2816   size_t node;
2817   size_t highest_node_number = Linux::numa_max_node();
2818   int num_nodes = 0;
2819 
2820   // Get the total number of nodes in the system including nodes without memory.
2821   for (node = 0; node <= highest_node_number; node++) {
2822     if (isnode_in_existing_nodes(node)) {
2823       num_nodes++;
2824     }
2825   }
2826   return num_nodes;
2827 }
2828 
2829 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2830   size_t highest_node_number = Linux::numa_max_node();
2831   size_t i = 0;
2832 
2833   // Map all node ids in which is possible to allocate memory. Also nodes are
2834   // not always consecutively available, i.e. available from 0 to the highest
2835   // node number.
2836   for (size_t node = 0; node <= highest_node_number; node++) {
2837     if (Linux::isnode_in_configured_nodes(node)) {
2838       ids[i++] = node;
2839     }
2840   }
2841   return i;
2842 }
2843 
2844 bool os::get_page_info(char *start, page_info* info) {
2845   return false;
2846 }
2847 
2848 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2849                      page_info* page_found) {
2850   return end;
2851 }
2852 
2853 
2854 int os::Linux::sched_getcpu_syscall(void) {
2855   unsigned int cpu = 0;
2856   int retval = -1;
2857 
2858 #if defined(IA32)
2859   #ifndef SYS_getcpu
2860     #define SYS_getcpu 318
2861   #endif
2862   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2863 #elif defined(AMD64)
2864 // Unfortunately we have to bring all these macros here from vsyscall.h
2865 // to be able to compile on old linuxes.
2866   #define __NR_vgetcpu 2
2867   #define VSYSCALL_START (-10UL << 20)
2868   #define VSYSCALL_SIZE 1024
2869   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2870   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2871   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2872   retval = vgetcpu(&cpu, NULL, NULL);
2873 #endif
2874 
2875   return (retval == -1) ? retval : cpu;
2876 }
2877 
2878 void os::Linux::sched_getcpu_init() {
2879   // sched_getcpu() should be in libc.
2880   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2881                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2882 
2883   // If it's not, try a direct syscall.
2884   if (sched_getcpu() == -1) {
2885     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2886                                     (void*)&sched_getcpu_syscall));
2887   }
2888 }
2889 
2890 // Something to do with the numa-aware allocator needs these symbols
2891 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2892 extern "C" JNIEXPORT void numa_error(char *where) { }
2893 
2894 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2895 // load symbol from base version instead.
2896 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2897   void *f = dlvsym(handle, name, "libnuma_1.1");
2898   if (f == NULL) {
2899     f = dlsym(handle, name);
2900   }
2901   return f;
2902 }
2903 
2904 // Handle request to load libnuma symbol version 1.2 (API v2) only.
2905 // Return NULL if the symbol is not defined in this particular version.
2906 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2907   return dlvsym(handle, name, "libnuma_1.2");
2908 }
2909 
2910 bool os::Linux::libnuma_init() {
2911   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
2912     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2913     if (handle != NULL) {
2914       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2915                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2916       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2917                                        libnuma_dlsym(handle, "numa_max_node")));
2918       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2919                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
2920       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2921                                         libnuma_dlsym(handle, "numa_available")));
2922       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2923                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2924       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2925                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2926       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
2927                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
2928       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2929                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2930       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2931                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2932       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2933                                        libnuma_dlsym(handle, "numa_distance")));
2934 
2935       if (numa_available() != -1) {
2936         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2937         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2938         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2939         // Create an index -> node mapping, since nodes are not always consecutive
2940         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2941         rebuild_nindex_to_node_map();
2942         // Create a cpu -> node mapping
2943         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2944         rebuild_cpu_to_node_map();
2945         return true;
2946       }
2947     }
2948   }
2949   return false;
2950 }
2951 
2952 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
2953   // Creating guard page is very expensive. Java thread has HotSpot
2954   // guard pages, only enable glibc guard page for non-Java threads.
2955   // (Remember: compiler thread is a Java thread, too!)
2956   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
2957 }
2958 
2959 void os::Linux::rebuild_nindex_to_node_map() {
2960   int highest_node_number = Linux::numa_max_node();
2961 
2962   nindex_to_node()->clear();
2963   for (int node = 0; node <= highest_node_number; node++) {
2964     if (Linux::isnode_in_existing_nodes(node)) {
2965       nindex_to_node()->append(node);
2966     }
2967   }
2968 }
2969 
2970 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2971 // The table is later used in get_node_by_cpu().
2972 void os::Linux::rebuild_cpu_to_node_map() {
2973   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2974                               // in libnuma (possible values are starting from 16,
2975                               // and continuing up with every other power of 2, but less
2976                               // than the maximum number of CPUs supported by kernel), and
2977                               // is a subject to change (in libnuma version 2 the requirements
2978                               // are more reasonable) we'll just hardcode the number they use
2979                               // in the library.
2980   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2981 
2982   size_t cpu_num = processor_count();
2983   size_t cpu_map_size = NCPUS / BitsPerCLong;
2984   size_t cpu_map_valid_size =
2985     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2986 
2987   cpu_to_node()->clear();
2988   cpu_to_node()->at_grow(cpu_num - 1);
2989 
2990   size_t node_num = get_existing_num_nodes();
2991 
2992   int distance = 0;
2993   int closest_distance = INT_MAX;
2994   int closest_node = 0;
2995   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2996   for (size_t i = 0; i < node_num; i++) {
2997     // Check if node is configured (not a memory-less node). If it is not, find
2998     // the closest configured node.
2999     if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
3000       closest_distance = INT_MAX;
3001       // Check distance from all remaining nodes in the system. Ignore distance
3002       // from itself and from another non-configured node.
3003       for (size_t m = 0; m < node_num; m++) {
3004         if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
3005           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
3006           // If a closest node is found, update. There is always at least one
3007           // configured node in the system so there is always at least one node
3008           // close.
3009           if (distance != 0 && distance < closest_distance) {
3010             closest_distance = distance;
3011             closest_node = nindex_to_node()->at(m);
3012           }
3013         }
3014       }
3015      } else {
3016        // Current node is already a configured node.
3017        closest_node = nindex_to_node()->at(i);
3018      }
3019 
3020     // Get cpus from the original node and map them to the closest node. If node
3021     // is a configured node (not a memory-less node), then original node and
3022     // closest node are the same.
3023     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
3024       for (size_t j = 0; j < cpu_map_valid_size; j++) {
3025         if (cpu_map[j] != 0) {
3026           for (size_t k = 0; k < BitsPerCLong; k++) {
3027             if (cpu_map[j] & (1UL << k)) {
3028               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
3029             }
3030           }
3031         }
3032       }
3033     }
3034   }
3035   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
3036 }
3037 
3038 int os::Linux::get_node_by_cpu(int cpu_id) {
3039   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3040     return cpu_to_node()->at(cpu_id);
3041   }
3042   return -1;
3043 }
3044 
3045 GrowableArray<int>* os::Linux::_cpu_to_node;
3046 GrowableArray<int>* os::Linux::_nindex_to_node;
3047 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3048 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3049 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3050 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3051 os::Linux::numa_available_func_t os::Linux::_numa_available;
3052 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3053 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3054 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3055 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3056 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3057 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3058 unsigned long* os::Linux::_numa_all_nodes;
3059 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3060 struct bitmask* os::Linux::_numa_nodes_ptr;
3061 
3062 bool os::pd_uncommit_memory(char* addr, size_t size) {
3063   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3064                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3065   return res  != (uintptr_t) MAP_FAILED;
3066 }
3067 
3068 // If there is no page mapped/committed, top (bottom + size) is returned
3069 static address get_stack_mapped_bottom(address bottom,
3070                                        size_t size,
3071                                        bool committed_only /* must have backing pages */) {
3072   // address used to test if the page is mapped/committed
3073   address test_addr = bottom + size;  
3074   size_t page_sz = os::vm_page_size();
3075   unsigned pages = size / page_sz;
3076 
3077   unsigned char vec[1];
3078   unsigned imin = 1, imax = pages + 1, imid;
3079   int mincore_return_value = 0;
3080 
3081   assert(imin <= imax, "Unexpected page size");
3082 
3083   while (imin < imax) {
3084     imid = (imax + imin) / 2;
3085     test_addr = bottom + (imid * page_sz);
3086 
3087     // Use a trick with mincore to check whether the page is mapped or not.
3088     // mincore sets vec to 1 if page resides in memory and to 0 if page
3089     // is swapped output but if page we are asking for is unmapped
3090     // it returns -1,ENOMEM
3091     mincore_return_value = mincore(test_addr, page_sz, vec);
3092 
3093     if (mincore_return_value == -1 || (committed_only && (vec[0] & 0x01) == 0)) {
3094       // Page is not mapped/committed go up
3095       // to find first mapped/committed page
3096       if ((mincore_return_value == -1 && errno != EAGAIN)
3097         || (committed_only && (vec[0] & 0x01) == 0)) {
3098         assert(mincore_return_value != -1 || errno == ENOMEM, "Unexpected mincore errno");
3099 
3100         imin = imid + 1;
3101       }
3102     } else {
3103       // mapped/committed, go down
3104       imax= imid;
3105     }
3106   }
3107 
3108   // Adjust stack bottom one page up if last checked page is not mapped/committed
3109   if (mincore_return_value == -1 || (committed_only && (vec[0] & 0x01) == 0)) {
3110     assert(mincore_return_value != -1 || (errno != EAGAIN && errno != ENOMEM),
3111       "Should not get to here");
3112 
3113     test_addr = test_addr + page_sz;
3114   }
3115 
3116   return test_addr;
3117 }
3118 
3119 // Linux uses a growable mapping for the stack, and if the mapping for
3120 // the stack guard pages is not removed when we detach a thread the
3121 // stack cannot grow beyond the pages where the stack guard was
3122 // mapped.  If at some point later in the process the stack expands to
3123 // that point, the Linux kernel cannot expand the stack any further
3124 // because the guard pages are in the way, and a segfault occurs.
3125 //
3126 // However, it's essential not to split the stack region by unmapping
3127 // a region (leaving a hole) that's already part of the stack mapping,
3128 // so if the stack mapping has already grown beyond the guard pages at
3129 // the time we create them, we have to truncate the stack mapping.
3130 // So, we need to know the extent of the stack mapping when
3131 // create_stack_guard_pages() is called.
3132 
3133 // We only need this for stacks that are growable: at the time of
3134 // writing thread stacks don't use growable mappings (i.e. those
3135 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3136 // only applies to the main thread.
3137 
3138 // If the (growable) stack mapping already extends beyond the point
3139 // where we're going to put our guard pages, truncate the mapping at
3140 // that point by munmap()ping it.  This ensures that when we later
3141 // munmap() the guard pages we don't leave a hole in the stack
3142 // mapping. This only affects the main/initial thread
3143 
3144 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3145   if (os::Linux::is_initial_thread()) {
3146     // As we manually grow stack up to bottom inside create_attached_thread(),
3147     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3148     // we don't need to do anything special.
3149     // Check it first, before calling heavy function.
3150     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3151     unsigned char vec[1];
3152 
3153     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3154       // Fallback to slow path on all errors, including EAGAIN
3155       stack_extent = (uintptr_t) get_stack_mapped_bottom(os::Linux::initial_thread_stack_bottom(),
3156                                                          (size_t)addr - stack_extent,
3157                                                          false /* committed_only */);
3158     }
3159 
3160     if (stack_extent < (uintptr_t)addr) {
3161       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3162     }
3163   }
3164 
3165   return os::commit_memory(addr, size, !ExecMem);
3166 }
3167 
3168 // If this is a growable mapping, remove the guard pages entirely by
3169 // munmap()ping them.  If not, just call uncommit_memory(). This only
3170 // affects the main/initial thread, but guard against future OS changes
3171 // It's safe to always unmap guard pages for initial thread because we
3172 // always place it right after end of the mapped region
3173 
3174 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3175   uintptr_t stack_extent, stack_base;
3176 
3177   if (os::Linux::is_initial_thread()) {
3178     return ::munmap(addr, size) == 0;
3179   }
3180 
3181   return os::uncommit_memory(addr, size);
3182 }
3183 
3184 size_t os::pd_committed_stack_size(address bottom, size_t size) {
3185   address bot = get_stack_mapped_bottom(bottom, size, true /* committed_only */);
3186   return size_t(bottom + size - bot);
3187 }
3188 
3189 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3190 // at 'requested_addr'. If there are existing memory mappings at the same
3191 // location, however, they will be overwritten. If 'fixed' is false,
3192 // 'requested_addr' is only treated as a hint, the return value may or
3193 // may not start from the requested address. Unlike Linux mmap(), this
3194 // function returns NULL to indicate failure.
3195 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3196   char * addr;
3197   int flags;
3198 
3199   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3200   if (fixed) {
3201     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3202     flags |= MAP_FIXED;
3203   }
3204 
3205   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3206   // touch an uncommitted page. Otherwise, the read/write might
3207   // succeed if we have enough swap space to back the physical page.
3208   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3209                        flags, -1, 0);
3210 
3211   return addr == MAP_FAILED ? NULL : addr;
3212 }
3213 
3214 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3215 //   (req_addr != NULL) or with a given alignment.
3216 //  - bytes shall be a multiple of alignment.
3217 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3218 //  - alignment sets the alignment at which memory shall be allocated.
3219 //     It must be a multiple of allocation granularity.
3220 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3221 //  req_addr or NULL.
3222 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3223 
3224   size_t extra_size = bytes;
3225   if (req_addr == NULL && alignment > 0) {
3226     extra_size += alignment;
3227   }
3228 
3229   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3230     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3231     -1, 0);
3232   if (start == MAP_FAILED) {
3233     start = NULL;
3234   } else {
3235     if (req_addr != NULL) {
3236       if (start != req_addr) {
3237         ::munmap(start, extra_size);
3238         start = NULL;
3239       }
3240     } else {
3241       char* const start_aligned = align_up(start, alignment);
3242       char* const end_aligned = start_aligned + bytes;
3243       char* const end = start + extra_size;
3244       if (start_aligned > start) {
3245         ::munmap(start, start_aligned - start);
3246       }
3247       if (end_aligned < end) {
3248         ::munmap(end_aligned, end - end_aligned);
3249       }
3250       start = start_aligned;
3251     }
3252   }
3253   return start;
3254 }
3255 
3256 static int anon_munmap(char * addr, size_t size) {
3257   return ::munmap(addr, size) == 0;
3258 }
3259 
3260 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3261                             size_t alignment_hint) {
3262   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3263 }
3264 
3265 bool os::pd_release_memory(char* addr, size_t size) {
3266   return anon_munmap(addr, size);
3267 }
3268 
3269 static bool linux_mprotect(char* addr, size_t size, int prot) {
3270   // Linux wants the mprotect address argument to be page aligned.
3271   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3272 
3273   // According to SUSv3, mprotect() should only be used with mappings
3274   // established by mmap(), and mmap() always maps whole pages. Unaligned
3275   // 'addr' likely indicates problem in the VM (e.g. trying to change
3276   // protection of malloc'ed or statically allocated memory). Check the
3277   // caller if you hit this assert.
3278   assert(addr == bottom, "sanity check");
3279 
3280   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3281   return ::mprotect(bottom, size, prot) == 0;
3282 }
3283 
3284 // Set protections specified
3285 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3286                         bool is_committed) {
3287   unsigned int p = 0;
3288   switch (prot) {
3289   case MEM_PROT_NONE: p = PROT_NONE; break;
3290   case MEM_PROT_READ: p = PROT_READ; break;
3291   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3292   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3293   default:
3294     ShouldNotReachHere();
3295   }
3296   // is_committed is unused.
3297   return linux_mprotect(addr, bytes, p);
3298 }
3299 
3300 bool os::guard_memory(char* addr, size_t size) {
3301   return linux_mprotect(addr, size, PROT_NONE);
3302 }
3303 
3304 bool os::unguard_memory(char* addr, size_t size) {
3305   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3306 }
3307 
3308 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3309                                                     size_t page_size) {
3310   bool result = false;
3311   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3312                  MAP_ANONYMOUS|MAP_PRIVATE,
3313                  -1, 0);
3314   if (p != MAP_FAILED) {
3315     void *aligned_p = align_up(p, page_size);
3316 
3317     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3318 
3319     munmap(p, page_size * 2);
3320   }
3321 
3322   if (warn && !result) {
3323     warning("TransparentHugePages is not supported by the operating system.");
3324   }
3325 
3326   return result;
3327 }
3328 
3329 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3330   bool result = false;
3331   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3332                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3333                  -1, 0);
3334 
3335   if (p != MAP_FAILED) {
3336     // We don't know if this really is a huge page or not.
3337     FILE *fp = fopen("/proc/self/maps", "r");
3338     if (fp) {
3339       while (!feof(fp)) {
3340         char chars[257];
3341         long x = 0;
3342         if (fgets(chars, sizeof(chars), fp)) {
3343           if (sscanf(chars, "%lx-%*x", &x) == 1
3344               && x == (long)p) {
3345             if (strstr (chars, "hugepage")) {
3346               result = true;
3347               break;
3348             }
3349           }
3350         }
3351       }
3352       fclose(fp);
3353     }
3354     munmap(p, page_size);
3355   }
3356 
3357   if (warn && !result) {
3358     warning("HugeTLBFS is not supported by the operating system.");
3359   }
3360 
3361   return result;
3362 }
3363 
3364 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3365 //
3366 // From the coredump_filter documentation:
3367 //
3368 // - (bit 0) anonymous private memory
3369 // - (bit 1) anonymous shared memory
3370 // - (bit 2) file-backed private memory
3371 // - (bit 3) file-backed shared memory
3372 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3373 //           effective only if the bit 2 is cleared)
3374 // - (bit 5) hugetlb private memory
3375 // - (bit 6) hugetlb shared memory
3376 //
3377 static void set_coredump_filter(void) {
3378   FILE *f;
3379   long cdm;
3380 
3381   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3382     return;
3383   }
3384 
3385   if (fscanf(f, "%lx", &cdm) != 1) {
3386     fclose(f);
3387     return;
3388   }
3389 
3390   rewind(f);
3391 
3392   if ((cdm & LARGEPAGES_BIT) == 0) {
3393     cdm |= LARGEPAGES_BIT;
3394     fprintf(f, "%#lx", cdm);
3395   }
3396 
3397   fclose(f);
3398 }
3399 
3400 // Large page support
3401 
3402 static size_t _large_page_size = 0;
3403 
3404 size_t os::Linux::find_large_page_size() {
3405   size_t large_page_size = 0;
3406 
3407   // large_page_size on Linux is used to round up heap size. x86 uses either
3408   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3409   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3410   // page as large as 256M.
3411   //
3412   // Here we try to figure out page size by parsing /proc/meminfo and looking
3413   // for a line with the following format:
3414   //    Hugepagesize:     2048 kB
3415   //
3416   // If we can't determine the value (e.g. /proc is not mounted, or the text
3417   // format has been changed), we'll use the largest page size supported by
3418   // the processor.
3419 
3420 #ifndef ZERO
3421   large_page_size =
3422     AARCH64_ONLY(2 * M)
3423     AMD64_ONLY(2 * M)
3424     ARM32_ONLY(2 * M)
3425     IA32_ONLY(4 * M)
3426     IA64_ONLY(256 * M)
3427     PPC_ONLY(4 * M)
3428     S390_ONLY(1 * M)
3429     SPARC_ONLY(4 * M);
3430 #endif // ZERO
3431 
3432   FILE *fp = fopen("/proc/meminfo", "r");
3433   if (fp) {
3434     while (!feof(fp)) {
3435       int x = 0;
3436       char buf[16];
3437       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3438         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3439           large_page_size = x * K;
3440           break;
3441         }
3442       } else {
3443         // skip to next line
3444         for (;;) {
3445           int ch = fgetc(fp);
3446           if (ch == EOF || ch == (int)'\n') break;
3447         }
3448       }
3449     }
3450     fclose(fp);
3451   }
3452 
3453   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3454     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3455             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3456             proper_unit_for_byte_size(large_page_size));
3457   }
3458 
3459   return large_page_size;
3460 }
3461 
3462 size_t os::Linux::setup_large_page_size() {
3463   _large_page_size = Linux::find_large_page_size();
3464   const size_t default_page_size = (size_t)Linux::page_size();
3465   if (_large_page_size > default_page_size) {
3466     _page_sizes[0] = _large_page_size;
3467     _page_sizes[1] = default_page_size;
3468     _page_sizes[2] = 0;
3469   }
3470 
3471   return _large_page_size;
3472 }
3473 
3474 bool os::Linux::setup_large_page_type(size_t page_size) {
3475   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3476       FLAG_IS_DEFAULT(UseSHM) &&
3477       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3478 
3479     // The type of large pages has not been specified by the user.
3480 
3481     // Try UseHugeTLBFS and then UseSHM.
3482     UseHugeTLBFS = UseSHM = true;
3483 
3484     // Don't try UseTransparentHugePages since there are known
3485     // performance issues with it turned on. This might change in the future.
3486     UseTransparentHugePages = false;
3487   }
3488 
3489   if (UseTransparentHugePages) {
3490     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3491     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3492       UseHugeTLBFS = false;
3493       UseSHM = false;
3494       return true;
3495     }
3496     UseTransparentHugePages = false;
3497   }
3498 
3499   if (UseHugeTLBFS) {
3500     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3501     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3502       UseSHM = false;
3503       return true;
3504     }
3505     UseHugeTLBFS = false;
3506   }
3507 
3508   return UseSHM;
3509 }
3510 
3511 void os::large_page_init() {
3512   if (!UseLargePages &&
3513       !UseTransparentHugePages &&
3514       !UseHugeTLBFS &&
3515       !UseSHM) {
3516     // Not using large pages.
3517     return;
3518   }
3519 
3520   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3521     // The user explicitly turned off large pages.
3522     // Ignore the rest of the large pages flags.
3523     UseTransparentHugePages = false;
3524     UseHugeTLBFS = false;
3525     UseSHM = false;
3526     return;
3527   }
3528 
3529   size_t large_page_size = Linux::setup_large_page_size();
3530   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3531 
3532   set_coredump_filter();
3533 }
3534 
3535 #ifndef SHM_HUGETLB
3536   #define SHM_HUGETLB 04000
3537 #endif
3538 
3539 #define shm_warning_format(format, ...)              \
3540   do {                                               \
3541     if (UseLargePages &&                             \
3542         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3543          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3544          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3545       warning(format, __VA_ARGS__);                  \
3546     }                                                \
3547   } while (0)
3548 
3549 #define shm_warning(str) shm_warning_format("%s", str)
3550 
3551 #define shm_warning_with_errno(str)                \
3552   do {                                             \
3553     int err = errno;                               \
3554     shm_warning_format(str " (error = %d)", err);  \
3555   } while (0)
3556 
3557 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3558   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3559 
3560   if (!is_aligned(alignment, SHMLBA)) {
3561     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3562     return NULL;
3563   }
3564 
3565   // To ensure that we get 'alignment' aligned memory from shmat,
3566   // we pre-reserve aligned virtual memory and then attach to that.
3567 
3568   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3569   if (pre_reserved_addr == NULL) {
3570     // Couldn't pre-reserve aligned memory.
3571     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3572     return NULL;
3573   }
3574 
3575   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3576   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3577 
3578   if ((intptr_t)addr == -1) {
3579     int err = errno;
3580     shm_warning_with_errno("Failed to attach shared memory.");
3581 
3582     assert(err != EACCES, "Unexpected error");
3583     assert(err != EIDRM,  "Unexpected error");
3584     assert(err != EINVAL, "Unexpected error");
3585 
3586     // Since we don't know if the kernel unmapped the pre-reserved memory area
3587     // we can't unmap it, since that would potentially unmap memory that was
3588     // mapped from other threads.
3589     return NULL;
3590   }
3591 
3592   return addr;
3593 }
3594 
3595 static char* shmat_at_address(int shmid, char* req_addr) {
3596   if (!is_aligned(req_addr, SHMLBA)) {
3597     assert(false, "Requested address needs to be SHMLBA aligned");
3598     return NULL;
3599   }
3600 
3601   char* addr = (char*)shmat(shmid, req_addr, 0);
3602 
3603   if ((intptr_t)addr == -1) {
3604     shm_warning_with_errno("Failed to attach shared memory.");
3605     return NULL;
3606   }
3607 
3608   return addr;
3609 }
3610 
3611 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3612   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3613   if (req_addr != NULL) {
3614     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3615     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3616     return shmat_at_address(shmid, req_addr);
3617   }
3618 
3619   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3620   // return large page size aligned memory addresses when req_addr == NULL.
3621   // However, if the alignment is larger than the large page size, we have
3622   // to manually ensure that the memory returned is 'alignment' aligned.
3623   if (alignment > os::large_page_size()) {
3624     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3625     return shmat_with_alignment(shmid, bytes, alignment);
3626   } else {
3627     return shmat_at_address(shmid, NULL);
3628   }
3629 }
3630 
3631 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3632                                             char* req_addr, bool exec) {
3633   // "exec" is passed in but not used.  Creating the shared image for
3634   // the code cache doesn't have an SHM_X executable permission to check.
3635   assert(UseLargePages && UseSHM, "only for SHM large pages");
3636   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3637   assert(is_aligned(req_addr, alignment), "Unaligned address");
3638 
3639   if (!is_aligned(bytes, os::large_page_size())) {
3640     return NULL; // Fallback to small pages.
3641   }
3642 
3643   // Create a large shared memory region to attach to based on size.
3644   // Currently, size is the total size of the heap.
3645   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3646   if (shmid == -1) {
3647     // Possible reasons for shmget failure:
3648     // 1. shmmax is too small for Java heap.
3649     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3650     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3651     // 2. not enough large page memory.
3652     //    > check available large pages: cat /proc/meminfo
3653     //    > increase amount of large pages:
3654     //          echo new_value > /proc/sys/vm/nr_hugepages
3655     //      Note 1: different Linux may use different name for this property,
3656     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3657     //      Note 2: it's possible there's enough physical memory available but
3658     //            they are so fragmented after a long run that they can't
3659     //            coalesce into large pages. Try to reserve large pages when
3660     //            the system is still "fresh".
3661     shm_warning_with_errno("Failed to reserve shared memory.");
3662     return NULL;
3663   }
3664 
3665   // Attach to the region.
3666   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3667 
3668   // Remove shmid. If shmat() is successful, the actual shared memory segment
3669   // will be deleted when it's detached by shmdt() or when the process
3670   // terminates. If shmat() is not successful this will remove the shared
3671   // segment immediately.
3672   shmctl(shmid, IPC_RMID, NULL);
3673 
3674   return addr;
3675 }
3676 
3677 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3678                                         int error) {
3679   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3680 
3681   bool warn_on_failure = UseLargePages &&
3682       (!FLAG_IS_DEFAULT(UseLargePages) ||
3683        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3684        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3685 
3686   if (warn_on_failure) {
3687     char msg[128];
3688     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3689                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3690     warning("%s", msg);
3691   }
3692 }
3693 
3694 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3695                                                         char* req_addr,
3696                                                         bool exec) {
3697   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3698   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
3699   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3700 
3701   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3702   char* addr = (char*)::mmap(req_addr, bytes, prot,
3703                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3704                              -1, 0);
3705 
3706   if (addr == MAP_FAILED) {
3707     warn_on_large_pages_failure(req_addr, bytes, errno);
3708     return NULL;
3709   }
3710 
3711   assert(is_aligned(addr, os::large_page_size()), "Must be");
3712 
3713   return addr;
3714 }
3715 
3716 // Reserve memory using mmap(MAP_HUGETLB).
3717 //  - bytes shall be a multiple of alignment.
3718 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3719 //  - alignment sets the alignment at which memory shall be allocated.
3720 //     It must be a multiple of allocation granularity.
3721 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3722 //  req_addr or NULL.
3723 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3724                                                          size_t alignment,
3725                                                          char* req_addr,
3726                                                          bool exec) {
3727   size_t large_page_size = os::large_page_size();
3728   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3729 
3730   assert(is_aligned(req_addr, alignment), "Must be");
3731   assert(is_aligned(bytes, alignment), "Must be");
3732 
3733   // First reserve - but not commit - the address range in small pages.
3734   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3735 
3736   if (start == NULL) {
3737     return NULL;
3738   }
3739 
3740   assert(is_aligned(start, alignment), "Must be");
3741 
3742   char* end = start + bytes;
3743 
3744   // Find the regions of the allocated chunk that can be promoted to large pages.
3745   char* lp_start = align_up(start, large_page_size);
3746   char* lp_end   = align_down(end, large_page_size);
3747 
3748   size_t lp_bytes = lp_end - lp_start;
3749 
3750   assert(is_aligned(lp_bytes, large_page_size), "Must be");
3751 
3752   if (lp_bytes == 0) {
3753     // The mapped region doesn't even span the start and the end of a large page.
3754     // Fall back to allocate a non-special area.
3755     ::munmap(start, end - start);
3756     return NULL;
3757   }
3758 
3759   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3760 
3761   void* result;
3762 
3763   // Commit small-paged leading area.
3764   if (start != lp_start) {
3765     result = ::mmap(start, lp_start - start, prot,
3766                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3767                     -1, 0);
3768     if (result == MAP_FAILED) {
3769       ::munmap(lp_start, end - lp_start);
3770       return NULL;
3771     }
3772   }
3773 
3774   // Commit large-paged area.
3775   result = ::mmap(lp_start, lp_bytes, prot,
3776                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3777                   -1, 0);
3778   if (result == MAP_FAILED) {
3779     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3780     // If the mmap above fails, the large pages region will be unmapped and we
3781     // have regions before and after with small pages. Release these regions.
3782     //
3783     // |  mapped  |  unmapped  |  mapped  |
3784     // ^          ^            ^          ^
3785     // start      lp_start     lp_end     end
3786     //
3787     ::munmap(start, lp_start - start);
3788     ::munmap(lp_end, end - lp_end);
3789     return NULL;
3790   }
3791 
3792   // Commit small-paged trailing area.
3793   if (lp_end != end) {
3794     result = ::mmap(lp_end, end - lp_end, prot,
3795                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3796                     -1, 0);
3797     if (result == MAP_FAILED) {
3798       ::munmap(start, lp_end - start);
3799       return NULL;
3800     }
3801   }
3802 
3803   return start;
3804 }
3805 
3806 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3807                                                    size_t alignment,
3808                                                    char* req_addr,
3809                                                    bool exec) {
3810   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3811   assert(is_aligned(req_addr, alignment), "Must be");
3812   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3813   assert(is_power_of_2(os::large_page_size()), "Must be");
3814   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3815 
3816   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3817     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3818   } else {
3819     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3820   }
3821 }
3822 
3823 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3824                                  char* req_addr, bool exec) {
3825   assert(UseLargePages, "only for large pages");
3826 
3827   char* addr;
3828   if (UseSHM) {
3829     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3830   } else {
3831     assert(UseHugeTLBFS, "must be");
3832     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3833   }
3834 
3835   if (addr != NULL) {
3836     if (UseNUMAInterleaving) {
3837       numa_make_global(addr, bytes);
3838     }
3839 
3840     // The memory is committed
3841     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3842   }
3843 
3844   return addr;
3845 }
3846 
3847 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3848   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3849   return shmdt(base) == 0;
3850 }
3851 
3852 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3853   return pd_release_memory(base, bytes);
3854 }
3855 
3856 bool os::release_memory_special(char* base, size_t bytes) {
3857   bool res;
3858   if (MemTracker::tracking_level() > NMT_minimal) {
3859     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3860     res = os::Linux::release_memory_special_impl(base, bytes);
3861     if (res) {
3862       tkr.record((address)base, bytes);
3863     }
3864 
3865   } else {
3866     res = os::Linux::release_memory_special_impl(base, bytes);
3867   }
3868   return res;
3869 }
3870 
3871 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3872   assert(UseLargePages, "only for large pages");
3873   bool res;
3874 
3875   if (UseSHM) {
3876     res = os::Linux::release_memory_special_shm(base, bytes);
3877   } else {
3878     assert(UseHugeTLBFS, "must be");
3879     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3880   }
3881   return res;
3882 }
3883 
3884 size_t os::large_page_size() {
3885   return _large_page_size;
3886 }
3887 
3888 // With SysV SHM the entire memory region must be allocated as shared
3889 // memory.
3890 // HugeTLBFS allows application to commit large page memory on demand.
3891 // However, when committing memory with HugeTLBFS fails, the region
3892 // that was supposed to be committed will lose the old reservation
3893 // and allow other threads to steal that memory region. Because of this
3894 // behavior we can't commit HugeTLBFS memory.
3895 bool os::can_commit_large_page_memory() {
3896   return UseTransparentHugePages;
3897 }
3898 
3899 bool os::can_execute_large_page_memory() {
3900   return UseTransparentHugePages || UseHugeTLBFS;
3901 }
3902 
3903 // Reserve memory at an arbitrary address, only if that area is
3904 // available (and not reserved for something else).
3905 
3906 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3907   const int max_tries = 10;
3908   char* base[max_tries];
3909   size_t size[max_tries];
3910   const size_t gap = 0x000000;
3911 
3912   // Assert only that the size is a multiple of the page size, since
3913   // that's all that mmap requires, and since that's all we really know
3914   // about at this low abstraction level.  If we need higher alignment,
3915   // we can either pass an alignment to this method or verify alignment
3916   // in one of the methods further up the call chain.  See bug 5044738.
3917   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3918 
3919   // Repeatedly allocate blocks until the block is allocated at the
3920   // right spot.
3921 
3922   // Linux mmap allows caller to pass an address as hint; give it a try first,
3923   // if kernel honors the hint then we can return immediately.
3924   char * addr = anon_mmap(requested_addr, bytes, false);
3925   if (addr == requested_addr) {
3926     return requested_addr;
3927   }
3928 
3929   if (addr != NULL) {
3930     // mmap() is successful but it fails to reserve at the requested address
3931     anon_munmap(addr, bytes);
3932   }
3933 
3934   int i;
3935   for (i = 0; i < max_tries; ++i) {
3936     base[i] = reserve_memory(bytes);
3937 
3938     if (base[i] != NULL) {
3939       // Is this the block we wanted?
3940       if (base[i] == requested_addr) {
3941         size[i] = bytes;
3942         break;
3943       }
3944 
3945       // Does this overlap the block we wanted? Give back the overlapped
3946       // parts and try again.
3947 
3948       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3949       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3950         unmap_memory(base[i], top_overlap);
3951         base[i] += top_overlap;
3952         size[i] = bytes - top_overlap;
3953       } else {
3954         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3955         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3956           unmap_memory(requested_addr, bottom_overlap);
3957           size[i] = bytes - bottom_overlap;
3958         } else {
3959           size[i] = bytes;
3960         }
3961       }
3962     }
3963   }
3964 
3965   // Give back the unused reserved pieces.
3966 
3967   for (int j = 0; j < i; ++j) {
3968     if (base[j] != NULL) {
3969       unmap_memory(base[j], size[j]);
3970     }
3971   }
3972 
3973   if (i < max_tries) {
3974     return requested_addr;
3975   } else {
3976     return NULL;
3977   }
3978 }
3979 
3980 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3981   return ::read(fd, buf, nBytes);
3982 }
3983 
3984 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3985   return ::pread(fd, buf, nBytes, offset);
3986 }
3987 
3988 // Short sleep, direct OS call.
3989 //
3990 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3991 // sched_yield(2) will actually give up the CPU:
3992 //
3993 //   * Alone on this pariticular CPU, keeps running.
3994 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3995 //     (pre 2.6.39).
3996 //
3997 // So calling this with 0 is an alternative.
3998 //
3999 void os::naked_short_sleep(jlong ms) {
4000   struct timespec req;
4001 
4002   assert(ms < 1000, "Un-interruptable sleep, short time use only");
4003   req.tv_sec = 0;
4004   if (ms > 0) {
4005     req.tv_nsec = (ms % 1000) * 1000000;
4006   } else {
4007     req.tv_nsec = 1;
4008   }
4009 
4010   nanosleep(&req, NULL);
4011 
4012   return;
4013 }
4014 
4015 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4016 void os::infinite_sleep() {
4017   while (true) {    // sleep forever ...
4018     ::sleep(100);   // ... 100 seconds at a time
4019   }
4020 }
4021 
4022 // Used to convert frequent JVM_Yield() to nops
4023 bool os::dont_yield() {
4024   return DontYieldALot;
4025 }
4026 
4027 void os::naked_yield() {
4028   sched_yield();
4029 }
4030 
4031 ////////////////////////////////////////////////////////////////////////////////
4032 // thread priority support
4033 
4034 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4035 // only supports dynamic priority, static priority must be zero. For real-time
4036 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4037 // However, for large multi-threaded applications, SCHED_RR is not only slower
4038 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4039 // of 5 runs - Sep 2005).
4040 //
4041 // The following code actually changes the niceness of kernel-thread/LWP. It
4042 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4043 // not the entire user process, and user level threads are 1:1 mapped to kernel
4044 // threads. It has always been the case, but could change in the future. For
4045 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4046 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
4047 
4048 int os::java_to_os_priority[CriticalPriority + 1] = {
4049   19,              // 0 Entry should never be used
4050 
4051    4,              // 1 MinPriority
4052    3,              // 2
4053    2,              // 3
4054 
4055    1,              // 4
4056    0,              // 5 NormPriority
4057   -1,              // 6
4058 
4059   -2,              // 7
4060   -3,              // 8
4061   -4,              // 9 NearMaxPriority
4062 
4063   -5,              // 10 MaxPriority
4064 
4065   -5               // 11 CriticalPriority
4066 };
4067 
4068 static int prio_init() {
4069   if (ThreadPriorityPolicy == 1) {
4070     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
4071     // if effective uid is not root. Perhaps, a more elegant way of doing
4072     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
4073     if (geteuid() != 0) {
4074       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4075         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
4076       }
4077       ThreadPriorityPolicy = 0;
4078     }
4079   }
4080   if (UseCriticalJavaThreadPriority) {
4081     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4082   }
4083   return 0;
4084 }
4085 
4086 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4087   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4088 
4089   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4090   return (ret == 0) ? OS_OK : OS_ERR;
4091 }
4092 
4093 OSReturn os::get_native_priority(const Thread* const thread,
4094                                  int *priority_ptr) {
4095   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4096     *priority_ptr = java_to_os_priority[NormPriority];
4097     return OS_OK;
4098   }
4099 
4100   errno = 0;
4101   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4102   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4103 }
4104 
4105 // Hint to the underlying OS that a task switch would not be good.
4106 // Void return because it's a hint and can fail.
4107 void os::hint_no_preempt() {}
4108 
4109 ////////////////////////////////////////////////////////////////////////////////
4110 // suspend/resume support
4111 
4112 //  The low-level signal-based suspend/resume support is a remnant from the
4113 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4114 //  within hotspot. Currently used by JFR's OSThreadSampler
4115 //
4116 //  The remaining code is greatly simplified from the more general suspension
4117 //  code that used to be used.
4118 //
4119 //  The protocol is quite simple:
4120 //  - suspend:
4121 //      - sends a signal to the target thread
4122 //      - polls the suspend state of the osthread using a yield loop
4123 //      - target thread signal handler (SR_handler) sets suspend state
4124 //        and blocks in sigsuspend until continued
4125 //  - resume:
4126 //      - sets target osthread state to continue
4127 //      - sends signal to end the sigsuspend loop in the SR_handler
4128 //
4129 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4130 //  but is checked for NULL in SR_handler as a thread termination indicator.
4131 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4132 //
4133 //  Note that resume_clear_context() and suspend_save_context() are needed
4134 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4135 //  which in part is used by:
4136 //    - Forte Analyzer: AsyncGetCallTrace()
4137 //    - StackBanging: get_frame_at_stack_banging_point()
4138 
4139 static void resume_clear_context(OSThread *osthread) {
4140   osthread->set_ucontext(NULL);
4141   osthread->set_siginfo(NULL);
4142 }
4143 
4144 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4145                                  ucontext_t* context) {
4146   osthread->set_ucontext(context);
4147   osthread->set_siginfo(siginfo);
4148 }
4149 
4150 // Handler function invoked when a thread's execution is suspended or
4151 // resumed. We have to be careful that only async-safe functions are
4152 // called here (Note: most pthread functions are not async safe and
4153 // should be avoided.)
4154 //
4155 // Note: sigwait() is a more natural fit than sigsuspend() from an
4156 // interface point of view, but sigwait() prevents the signal hander
4157 // from being run. libpthread would get very confused by not having
4158 // its signal handlers run and prevents sigwait()'s use with the
4159 // mutex granting granting signal.
4160 //
4161 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4162 //
4163 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4164   // Save and restore errno to avoid confusing native code with EINTR
4165   // after sigsuspend.
4166   int old_errno = errno;
4167 
4168   Thread* thread = Thread::current_or_null_safe();
4169   assert(thread != NULL, "Missing current thread in SR_handler");
4170 
4171   // On some systems we have seen signal delivery get "stuck" until the signal
4172   // mask is changed as part of thread termination. Check that the current thread
4173   // has not already terminated (via SR_lock()) - else the following assertion
4174   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4175   // destructor has completed.
4176 
4177   if (thread->SR_lock() == NULL) {
4178     return;
4179   }
4180 
4181   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4182 
4183   OSThread* osthread = thread->osthread();
4184 
4185   os::SuspendResume::State current = osthread->sr.state();
4186   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4187     suspend_save_context(osthread, siginfo, context);
4188 
4189     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4190     os::SuspendResume::State state = osthread->sr.suspended();
4191     if (state == os::SuspendResume::SR_SUSPENDED) {
4192       sigset_t suspend_set;  // signals for sigsuspend()
4193       sigemptyset(&suspend_set);
4194       // get current set of blocked signals and unblock resume signal
4195       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4196       sigdelset(&suspend_set, SR_signum);
4197 
4198       sr_semaphore.signal();
4199       // wait here until we are resumed
4200       while (1) {
4201         sigsuspend(&suspend_set);
4202 
4203         os::SuspendResume::State result = osthread->sr.running();
4204         if (result == os::SuspendResume::SR_RUNNING) {
4205           sr_semaphore.signal();
4206           break;
4207         }
4208       }
4209 
4210     } else if (state == os::SuspendResume::SR_RUNNING) {
4211       // request was cancelled, continue
4212     } else {
4213       ShouldNotReachHere();
4214     }
4215 
4216     resume_clear_context(osthread);
4217   } else if (current == os::SuspendResume::SR_RUNNING) {
4218     // request was cancelled, continue
4219   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4220     // ignore
4221   } else {
4222     // ignore
4223   }
4224 
4225   errno = old_errno;
4226 }
4227 
4228 static int SR_initialize() {
4229   struct sigaction act;
4230   char *s;
4231 
4232   // Get signal number to use for suspend/resume
4233   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4234     int sig = ::strtol(s, 0, 10);
4235     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4236         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4237       SR_signum = sig;
4238     } else {
4239       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4240               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4241     }
4242   }
4243 
4244   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4245          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4246 
4247   sigemptyset(&SR_sigset);
4248   sigaddset(&SR_sigset, SR_signum);
4249 
4250   // Set up signal handler for suspend/resume
4251   act.sa_flags = SA_RESTART|SA_SIGINFO;
4252   act.sa_handler = (void (*)(int)) SR_handler;
4253 
4254   // SR_signum is blocked by default.
4255   // 4528190 - We also need to block pthread restart signal (32 on all
4256   // supported Linux platforms). Note that LinuxThreads need to block
4257   // this signal for all threads to work properly. So we don't have
4258   // to use hard-coded signal number when setting up the mask.
4259   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4260 
4261   if (sigaction(SR_signum, &act, 0) == -1) {
4262     return -1;
4263   }
4264 
4265   // Save signal flag
4266   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4267   return 0;
4268 }
4269 
4270 static int sr_notify(OSThread* osthread) {
4271   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4272   assert_status(status == 0, status, "pthread_kill");
4273   return status;
4274 }
4275 
4276 // "Randomly" selected value for how long we want to spin
4277 // before bailing out on suspending a thread, also how often
4278 // we send a signal to a thread we want to resume
4279 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4280 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4281 
4282 // returns true on success and false on error - really an error is fatal
4283 // but this seems the normal response to library errors
4284 static bool do_suspend(OSThread* osthread) {
4285   assert(osthread->sr.is_running(), "thread should be running");
4286   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4287 
4288   // mark as suspended and send signal
4289   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4290     // failed to switch, state wasn't running?
4291     ShouldNotReachHere();
4292     return false;
4293   }
4294 
4295   if (sr_notify(osthread) != 0) {
4296     ShouldNotReachHere();
4297   }
4298 
4299   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4300   while (true) {
4301     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4302       break;
4303     } else {
4304       // timeout
4305       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4306       if (cancelled == os::SuspendResume::SR_RUNNING) {
4307         return false;
4308       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4309         // make sure that we consume the signal on the semaphore as well
4310         sr_semaphore.wait();
4311         break;
4312       } else {
4313         ShouldNotReachHere();
4314         return false;
4315       }
4316     }
4317   }
4318 
4319   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4320   return true;
4321 }
4322 
4323 static void do_resume(OSThread* osthread) {
4324   assert(osthread->sr.is_suspended(), "thread should be suspended");
4325   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4326 
4327   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4328     // failed to switch to WAKEUP_REQUEST
4329     ShouldNotReachHere();
4330     return;
4331   }
4332 
4333   while (true) {
4334     if (sr_notify(osthread) == 0) {
4335       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4336         if (osthread->sr.is_running()) {
4337           return;
4338         }
4339       }
4340     } else {
4341       ShouldNotReachHere();
4342     }
4343   }
4344 
4345   guarantee(osthread->sr.is_running(), "Must be running!");
4346 }
4347 
4348 ///////////////////////////////////////////////////////////////////////////////////
4349 // signal handling (except suspend/resume)
4350 
4351 // This routine may be used by user applications as a "hook" to catch signals.
4352 // The user-defined signal handler must pass unrecognized signals to this
4353 // routine, and if it returns true (non-zero), then the signal handler must
4354 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4355 // routine will never retun false (zero), but instead will execute a VM panic
4356 // routine kill the process.
4357 //
4358 // If this routine returns false, it is OK to call it again.  This allows
4359 // the user-defined signal handler to perform checks either before or after
4360 // the VM performs its own checks.  Naturally, the user code would be making
4361 // a serious error if it tried to handle an exception (such as a null check
4362 // or breakpoint) that the VM was generating for its own correct operation.
4363 //
4364 // This routine may recognize any of the following kinds of signals:
4365 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4366 // It should be consulted by handlers for any of those signals.
4367 //
4368 // The caller of this routine must pass in the three arguments supplied
4369 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4370 // field of the structure passed to sigaction().  This routine assumes that
4371 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4372 //
4373 // Note that the VM will print warnings if it detects conflicting signal
4374 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4375 //
4376 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4377                                                  siginfo_t* siginfo,
4378                                                  void* ucontext,
4379                                                  int abort_if_unrecognized);
4380 
4381 void signalHandler(int sig, siginfo_t* info, void* uc) {
4382   assert(info != NULL && uc != NULL, "it must be old kernel");
4383   int orig_errno = errno;  // Preserve errno value over signal handler.
4384   JVM_handle_linux_signal(sig, info, uc, true);
4385   errno = orig_errno;
4386 }
4387 
4388 
4389 // This boolean allows users to forward their own non-matching signals
4390 // to JVM_handle_linux_signal, harmlessly.
4391 bool os::Linux::signal_handlers_are_installed = false;
4392 
4393 // For signal-chaining
4394 struct sigaction sigact[NSIG];
4395 uint64_t sigs = 0;
4396 #if (64 < NSIG-1)
4397 #error "Not all signals can be encoded in sigs. Adapt its type!"
4398 #endif
4399 bool os::Linux::libjsig_is_loaded = false;
4400 typedef struct sigaction *(*get_signal_t)(int);
4401 get_signal_t os::Linux::get_signal_action = NULL;
4402 
4403 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4404   struct sigaction *actp = NULL;
4405 
4406   if (libjsig_is_loaded) {
4407     // Retrieve the old signal handler from libjsig
4408     actp = (*get_signal_action)(sig);
4409   }
4410   if (actp == NULL) {
4411     // Retrieve the preinstalled signal handler from jvm
4412     actp = get_preinstalled_handler(sig);
4413   }
4414 
4415   return actp;
4416 }
4417 
4418 static bool call_chained_handler(struct sigaction *actp, int sig,
4419                                  siginfo_t *siginfo, void *context) {
4420   // Call the old signal handler
4421   if (actp->sa_handler == SIG_DFL) {
4422     // It's more reasonable to let jvm treat it as an unexpected exception
4423     // instead of taking the default action.
4424     return false;
4425   } else if (actp->sa_handler != SIG_IGN) {
4426     if ((actp->sa_flags & SA_NODEFER) == 0) {
4427       // automaticlly block the signal
4428       sigaddset(&(actp->sa_mask), sig);
4429     }
4430 
4431     sa_handler_t hand = NULL;
4432     sa_sigaction_t sa = NULL;
4433     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4434     // retrieve the chained handler
4435     if (siginfo_flag_set) {
4436       sa = actp->sa_sigaction;
4437     } else {
4438       hand = actp->sa_handler;
4439     }
4440 
4441     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4442       actp->sa_handler = SIG_DFL;
4443     }
4444 
4445     // try to honor the signal mask
4446     sigset_t oset;
4447     sigemptyset(&oset);
4448     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4449 
4450     // call into the chained handler
4451     if (siginfo_flag_set) {
4452       (*sa)(sig, siginfo, context);
4453     } else {
4454       (*hand)(sig);
4455     }
4456 
4457     // restore the signal mask
4458     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4459   }
4460   // Tell jvm's signal handler the signal is taken care of.
4461   return true;
4462 }
4463 
4464 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4465   bool chained = false;
4466   // signal-chaining
4467   if (UseSignalChaining) {
4468     struct sigaction *actp = get_chained_signal_action(sig);
4469     if (actp != NULL) {
4470       chained = call_chained_handler(actp, sig, siginfo, context);
4471     }
4472   }
4473   return chained;
4474 }
4475 
4476 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4477   if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4478     return &sigact[sig];
4479   }
4480   return NULL;
4481 }
4482 
4483 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4484   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4485   sigact[sig] = oldAct;
4486   sigs |= (uint64_t)1 << (sig-1);
4487 }
4488 
4489 // for diagnostic
4490 int sigflags[NSIG];
4491 
4492 int os::Linux::get_our_sigflags(int sig) {
4493   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4494   return sigflags[sig];
4495 }
4496 
4497 void os::Linux::set_our_sigflags(int sig, int flags) {
4498   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4499   if (sig > 0 && sig < NSIG) {
4500     sigflags[sig] = flags;
4501   }
4502 }
4503 
4504 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4505   // Check for overwrite.
4506   struct sigaction oldAct;
4507   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4508 
4509   void* oldhand = oldAct.sa_sigaction
4510                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4511                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4512   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4513       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4514       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4515     if (AllowUserSignalHandlers || !set_installed) {
4516       // Do not overwrite; user takes responsibility to forward to us.
4517       return;
4518     } else if (UseSignalChaining) {
4519       // save the old handler in jvm
4520       save_preinstalled_handler(sig, oldAct);
4521       // libjsig also interposes the sigaction() call below and saves the
4522       // old sigaction on it own.
4523     } else {
4524       fatal("Encountered unexpected pre-existing sigaction handler "
4525             "%#lx for signal %d.", (long)oldhand, sig);
4526     }
4527   }
4528 
4529   struct sigaction sigAct;
4530   sigfillset(&(sigAct.sa_mask));
4531   sigAct.sa_handler = SIG_DFL;
4532   if (!set_installed) {
4533     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4534   } else {
4535     sigAct.sa_sigaction = signalHandler;
4536     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4537   }
4538   // Save flags, which are set by ours
4539   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4540   sigflags[sig] = sigAct.sa_flags;
4541 
4542   int ret = sigaction(sig, &sigAct, &oldAct);
4543   assert(ret == 0, "check");
4544 
4545   void* oldhand2  = oldAct.sa_sigaction
4546                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4547                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4548   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4549 }
4550 
4551 // install signal handlers for signals that HotSpot needs to
4552 // handle in order to support Java-level exception handling.
4553 
4554 void os::Linux::install_signal_handlers() {
4555   if (!signal_handlers_are_installed) {
4556     signal_handlers_are_installed = true;
4557 
4558     // signal-chaining
4559     typedef void (*signal_setting_t)();
4560     signal_setting_t begin_signal_setting = NULL;
4561     signal_setting_t end_signal_setting = NULL;
4562     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4563                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4564     if (begin_signal_setting != NULL) {
4565       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4566                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4567       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4568                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4569       libjsig_is_loaded = true;
4570       assert(UseSignalChaining, "should enable signal-chaining");
4571     }
4572     if (libjsig_is_loaded) {
4573       // Tell libjsig jvm is setting signal handlers
4574       (*begin_signal_setting)();
4575     }
4576 
4577     set_signal_handler(SIGSEGV, true);
4578     set_signal_handler(SIGPIPE, true);
4579     set_signal_handler(SIGBUS, true);
4580     set_signal_handler(SIGILL, true);
4581     set_signal_handler(SIGFPE, true);
4582 #if defined(PPC64)
4583     set_signal_handler(SIGTRAP, true);
4584 #endif
4585     set_signal_handler(SIGXFSZ, true);
4586 
4587     if (libjsig_is_loaded) {
4588       // Tell libjsig jvm finishes setting signal handlers
4589       (*end_signal_setting)();
4590     }
4591 
4592     // We don't activate signal checker if libjsig is in place, we trust ourselves
4593     // and if UserSignalHandler is installed all bets are off.
4594     // Log that signal checking is off only if -verbose:jni is specified.
4595     if (CheckJNICalls) {
4596       if (libjsig_is_loaded) {
4597         if (PrintJNIResolving) {
4598           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4599         }
4600         check_signals = false;
4601       }
4602       if (AllowUserSignalHandlers) {
4603         if (PrintJNIResolving) {
4604           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4605         }
4606         check_signals = false;
4607       }
4608     }
4609   }
4610 }
4611 
4612 // This is the fastest way to get thread cpu time on Linux.
4613 // Returns cpu time (user+sys) for any thread, not only for current.
4614 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4615 // It might work on 2.6.10+ with a special kernel/glibc patch.
4616 // For reference, please, see IEEE Std 1003.1-2004:
4617 //   http://www.unix.org/single_unix_specification
4618 
4619 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4620   struct timespec tp;
4621   int rc = os::Linux::clock_gettime(clockid, &tp);
4622   assert(rc == 0, "clock_gettime is expected to return 0 code");
4623 
4624   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4625 }
4626 
4627 void os::Linux::initialize_os_info() {
4628   assert(_os_version == 0, "OS info already initialized");
4629 
4630   struct utsname _uname;
4631 
4632   uint32_t major;
4633   uint32_t minor;
4634   uint32_t fix;
4635 
4636   int rc;
4637 
4638   // Kernel version is unknown if
4639   // verification below fails.
4640   _os_version = 0x01000000;
4641 
4642   rc = uname(&_uname);
4643   if (rc != -1) {
4644 
4645     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4646     if (rc == 3) {
4647 
4648       if (major < 256 && minor < 256 && fix < 256) {
4649         // Kernel version format is as expected,
4650         // set it overriding unknown state.
4651         _os_version = (major << 16) |
4652                       (minor << 8 ) |
4653                       (fix   << 0 ) ;
4654       }
4655     }
4656   }
4657 }
4658 
4659 uint32_t os::Linux::os_version() {
4660   assert(_os_version != 0, "not initialized");
4661   return _os_version & 0x00FFFFFF;
4662 }
4663 
4664 bool os::Linux::os_version_is_known() {
4665   assert(_os_version != 0, "not initialized");
4666   return _os_version & 0x01000000 ? false : true;
4667 }
4668 
4669 /////
4670 // glibc on Linux platform uses non-documented flag
4671 // to indicate, that some special sort of signal
4672 // trampoline is used.
4673 // We will never set this flag, and we should
4674 // ignore this flag in our diagnostic
4675 #ifdef SIGNIFICANT_SIGNAL_MASK
4676   #undef SIGNIFICANT_SIGNAL_MASK
4677 #endif
4678 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4679 
4680 static const char* get_signal_handler_name(address handler,
4681                                            char* buf, int buflen) {
4682   int offset = 0;
4683   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4684   if (found) {
4685     // skip directory names
4686     const char *p1, *p2;
4687     p1 = buf;
4688     size_t len = strlen(os::file_separator());
4689     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4690     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4691   } else {
4692     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4693   }
4694   return buf;
4695 }
4696 
4697 static void print_signal_handler(outputStream* st, int sig,
4698                                  char* buf, size_t buflen) {
4699   struct sigaction sa;
4700 
4701   sigaction(sig, NULL, &sa);
4702 
4703   // See comment for SIGNIFICANT_SIGNAL_MASK define
4704   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4705 
4706   st->print("%s: ", os::exception_name(sig, buf, buflen));
4707 
4708   address handler = (sa.sa_flags & SA_SIGINFO)
4709     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4710     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4711 
4712   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4713     st->print("SIG_DFL");
4714   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4715     st->print("SIG_IGN");
4716   } else {
4717     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4718   }
4719 
4720   st->print(", sa_mask[0]=");
4721   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4722 
4723   address rh = VMError::get_resetted_sighandler(sig);
4724   // May be, handler was resetted by VMError?
4725   if (rh != NULL) {
4726     handler = rh;
4727     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4728   }
4729 
4730   st->print(", sa_flags=");
4731   os::Posix::print_sa_flags(st, sa.sa_flags);
4732 
4733   // Check: is it our handler?
4734   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4735       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4736     // It is our signal handler
4737     // check for flags, reset system-used one!
4738     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4739       st->print(
4740                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4741                 os::Linux::get_our_sigflags(sig));
4742     }
4743   }
4744   st->cr();
4745 }
4746 
4747 
4748 #define DO_SIGNAL_CHECK(sig)                      \
4749   do {                                            \
4750     if (!sigismember(&check_signal_done, sig)) {  \
4751       os::Linux::check_signal_handler(sig);       \
4752     }                                             \
4753   } while (0)
4754 
4755 // This method is a periodic task to check for misbehaving JNI applications
4756 // under CheckJNI, we can add any periodic checks here
4757 
4758 void os::run_periodic_checks() {
4759   if (check_signals == false) return;
4760 
4761   // SEGV and BUS if overridden could potentially prevent
4762   // generation of hs*.log in the event of a crash, debugging
4763   // such a case can be very challenging, so we absolutely
4764   // check the following for a good measure:
4765   DO_SIGNAL_CHECK(SIGSEGV);
4766   DO_SIGNAL_CHECK(SIGILL);
4767   DO_SIGNAL_CHECK(SIGFPE);
4768   DO_SIGNAL_CHECK(SIGBUS);
4769   DO_SIGNAL_CHECK(SIGPIPE);
4770   DO_SIGNAL_CHECK(SIGXFSZ);
4771 #if defined(PPC64)
4772   DO_SIGNAL_CHECK(SIGTRAP);
4773 #endif
4774 
4775   // ReduceSignalUsage allows the user to override these handlers
4776   // see comments at the very top and jvm_md.h
4777   if (!ReduceSignalUsage) {
4778     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4779     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4780     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4781     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4782   }
4783 
4784   DO_SIGNAL_CHECK(SR_signum);
4785 }
4786 
4787 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4788 
4789 static os_sigaction_t os_sigaction = NULL;
4790 
4791 void os::Linux::check_signal_handler(int sig) {
4792   char buf[O_BUFLEN];
4793   address jvmHandler = NULL;
4794 
4795 
4796   struct sigaction act;
4797   if (os_sigaction == NULL) {
4798     // only trust the default sigaction, in case it has been interposed
4799     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4800     if (os_sigaction == NULL) return;
4801   }
4802 
4803   os_sigaction(sig, (struct sigaction*)NULL, &act);
4804 
4805 
4806   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4807 
4808   address thisHandler = (act.sa_flags & SA_SIGINFO)
4809     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4810     : CAST_FROM_FN_PTR(address, act.sa_handler);
4811 
4812 
4813   switch (sig) {
4814   case SIGSEGV:
4815   case SIGBUS:
4816   case SIGFPE:
4817   case SIGPIPE:
4818   case SIGILL:
4819   case SIGXFSZ:
4820     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4821     break;
4822 
4823   case SHUTDOWN1_SIGNAL:
4824   case SHUTDOWN2_SIGNAL:
4825   case SHUTDOWN3_SIGNAL:
4826   case BREAK_SIGNAL:
4827     jvmHandler = (address)user_handler();
4828     break;
4829 
4830   default:
4831     if (sig == SR_signum) {
4832       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4833     } else {
4834       return;
4835     }
4836     break;
4837   }
4838 
4839   if (thisHandler != jvmHandler) {
4840     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4841     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4842     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4843     // No need to check this sig any longer
4844     sigaddset(&check_signal_done, sig);
4845     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4846     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4847       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4848                     exception_name(sig, buf, O_BUFLEN));
4849     }
4850   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4851     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4852     tty->print("expected:");
4853     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4854     tty->cr();
4855     tty->print("  found:");
4856     os::Posix::print_sa_flags(tty, act.sa_flags);
4857     tty->cr();
4858     // No need to check this sig any longer
4859     sigaddset(&check_signal_done, sig);
4860   }
4861 
4862   // Dump all the signal
4863   if (sigismember(&check_signal_done, sig)) {
4864     print_signal_handlers(tty, buf, O_BUFLEN);
4865   }
4866 }
4867 
4868 extern void report_error(char* file_name, int line_no, char* title,
4869                          char* format, ...);
4870 
4871 // this is called _before_ the most of global arguments have been parsed
4872 void os::init(void) {
4873   char dummy;   // used to get a guess on initial stack address
4874 //  first_hrtime = gethrtime();
4875 
4876   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4877 
4878   init_random(1234567);
4879 
4880   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4881   if (Linux::page_size() == -1) {
4882     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4883           os::strerror(errno));
4884   }
4885   init_page_sizes((size_t) Linux::page_size());
4886 
4887   Linux::initialize_system_info();
4888 
4889   Linux::initialize_os_info();
4890 
4891   // main_thread points to the aboriginal thread
4892   Linux::_main_thread = pthread_self();
4893 
4894   Linux::clock_init();
4895   initial_time_count = javaTimeNanos();
4896 
4897   // retrieve entry point for pthread_setname_np
4898   Linux::_pthread_setname_np =
4899     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4900 
4901   os::Posix::init();
4902 }
4903 
4904 // To install functions for atexit system call
4905 extern "C" {
4906   static void perfMemory_exit_helper() {
4907     perfMemory_exit();
4908   }
4909 }
4910 
4911 void os::pd_init_container_support() {
4912   OSContainer::init();
4913 }
4914 
4915 // this is called _after_ the global arguments have been parsed
4916 jint os::init_2(void) {
4917 
4918   os::Posix::init_2();
4919 
4920   Linux::fast_thread_clock_init();
4921 
4922   // initialize suspend/resume support - must do this before signal_sets_init()
4923   if (SR_initialize() != 0) {
4924     perror("SR_initialize failed");
4925     return JNI_ERR;
4926   }
4927 
4928   Linux::signal_sets_init();
4929   Linux::install_signal_handlers();
4930 
4931   // Check and sets minimum stack sizes against command line options
4932   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4933     return JNI_ERR;
4934   }
4935   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4936 
4937 #if defined(IA32)
4938   workaround_expand_exec_shield_cs_limit();
4939 #endif
4940 
4941   Linux::libpthread_init();
4942   Linux::sched_getcpu_init();
4943   log_info(os)("HotSpot is running with %s, %s",
4944                Linux::glibc_version(), Linux::libpthread_version());
4945 
4946   if (UseNUMA) {
4947     if (!Linux::libnuma_init()) {
4948       UseNUMA = false;
4949     } else {
4950       if ((Linux::numa_max_node() < 1)) {
4951         // There's only one node(they start from 0), disable NUMA.
4952         UseNUMA = false;
4953       }
4954     }
4955     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4956     // we can make the adaptive lgrp chunk resizing work. If the user specified
4957     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4958     // disable adaptive resizing.
4959     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4960       if (FLAG_IS_DEFAULT(UseNUMA)) {
4961         UseNUMA = false;
4962       } else {
4963         if (FLAG_IS_DEFAULT(UseLargePages) &&
4964             FLAG_IS_DEFAULT(UseSHM) &&
4965             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4966           UseLargePages = false;
4967         } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4968           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4969           UseAdaptiveSizePolicy = false;
4970           UseAdaptiveNUMAChunkSizing = false;
4971         }
4972       }
4973     }
4974     if (!UseNUMA && ForceNUMA) {
4975       UseNUMA = true;
4976     }
4977   }
4978 
4979   if (MaxFDLimit) {
4980     // set the number of file descriptors to max. print out error
4981     // if getrlimit/setrlimit fails but continue regardless.
4982     struct rlimit nbr_files;
4983     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4984     if (status != 0) {
4985       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4986     } else {
4987       nbr_files.rlim_cur = nbr_files.rlim_max;
4988       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4989       if (status != 0) {
4990         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4991       }
4992     }
4993   }
4994 
4995   // Initialize lock used to serialize thread creation (see os::create_thread)
4996   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4997 
4998   // at-exit methods are called in the reverse order of their registration.
4999   // atexit functions are called on return from main or as a result of a
5000   // call to exit(3C). There can be only 32 of these functions registered
5001   // and atexit() does not set errno.
5002 
5003   if (PerfAllowAtExitRegistration) {
5004     // only register atexit functions if PerfAllowAtExitRegistration is set.
5005     // atexit functions can be delayed until process exit time, which
5006     // can be problematic for embedded VM situations. Embedded VMs should
5007     // call DestroyJavaVM() to assure that VM resources are released.
5008 
5009     // note: perfMemory_exit_helper atexit function may be removed in
5010     // the future if the appropriate cleanup code can be added to the
5011     // VM_Exit VMOperation's doit method.
5012     if (atexit(perfMemory_exit_helper) != 0) {
5013       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5014     }
5015   }
5016 
5017   // initialize thread priority policy
5018   prio_init();
5019 
5020   return JNI_OK;
5021 }
5022 
5023 // Mark the polling page as unreadable
5024 void os::make_polling_page_unreadable(void) {
5025   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
5026     fatal("Could not disable polling page");
5027   }
5028 }
5029 
5030 // Mark the polling page as readable
5031 void os::make_polling_page_readable(void) {
5032   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5033     fatal("Could not enable polling page");
5034   }
5035 }
5036 
5037 // older glibc versions don't have this macro (which expands to
5038 // an optimized bit-counting function) so we have to roll our own
5039 #ifndef CPU_COUNT
5040 
5041 static int _cpu_count(const cpu_set_t* cpus) {
5042   int count = 0;
5043   // only look up to the number of configured processors
5044   for (int i = 0; i < os::processor_count(); i++) {
5045     if (CPU_ISSET(i, cpus)) {
5046       count++;
5047     }
5048   }
5049   return count;
5050 }
5051 
5052 #define CPU_COUNT(cpus) _cpu_count(cpus)
5053 
5054 #endif // CPU_COUNT
5055 
5056 // Get the current number of available processors for this process.
5057 // This value can change at any time during a process's lifetime.
5058 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5059 // If it appears there may be more than 1024 processors then we do a
5060 // dynamic check - see 6515172 for details.
5061 // If anything goes wrong we fallback to returning the number of online
5062 // processors - which can be greater than the number available to the process.
5063 int os::Linux::active_processor_count() {
5064   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5065   cpu_set_t* cpus_p = &cpus;
5066   int cpus_size = sizeof(cpu_set_t);
5067 
5068   int configured_cpus = os::processor_count();  // upper bound on available cpus
5069   int cpu_count = 0;
5070 
5071 // old build platforms may not support dynamic cpu sets
5072 #ifdef CPU_ALLOC
5073 
5074   // To enable easy testing of the dynamic path on different platforms we
5075   // introduce a diagnostic flag: UseCpuAllocPath
5076   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5077     // kernel may use a mask bigger than cpu_set_t
5078     log_trace(os)("active_processor_count: using dynamic path %s"
5079                   "- configured processors: %d",
5080                   UseCpuAllocPath ? "(forced) " : "",
5081                   configured_cpus);
5082     cpus_p = CPU_ALLOC(configured_cpus);
5083     if (cpus_p != NULL) {
5084       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5085       // zero it just to be safe
5086       CPU_ZERO_S(cpus_size, cpus_p);
5087     }
5088     else {
5089        // failed to allocate so fallback to online cpus
5090        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5091        log_trace(os)("active_processor_count: "
5092                      "CPU_ALLOC failed (%s) - using "
5093                      "online processor count: %d",
5094                      os::strerror(errno), online_cpus);
5095        return online_cpus;
5096     }
5097   }
5098   else {
5099     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5100                   configured_cpus);
5101   }
5102 #else // CPU_ALLOC
5103 // these stubs won't be executed
5104 #define CPU_COUNT_S(size, cpus) -1
5105 #define CPU_FREE(cpus)
5106 
5107   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5108                 configured_cpus);
5109 #endif // CPU_ALLOC
5110 
5111   // pid 0 means the current thread - which we have to assume represents the process
5112   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5113     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5114       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5115     }
5116     else {
5117       cpu_count = CPU_COUNT(cpus_p);
5118     }
5119     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5120   }
5121   else {
5122     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5123     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5124             "which may exceed available processors", os::strerror(errno), cpu_count);
5125   }
5126 
5127   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5128     CPU_FREE(cpus_p);
5129   }
5130 
5131   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5132   return cpu_count;
5133 }
5134 
5135 // Determine the active processor count from one of
5136 // three different sources:
5137 //
5138 // 1. User option -XX:ActiveProcessorCount
5139 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5140 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5141 //
5142 // Option 1, if specified, will always override.
5143 // If the cgroup subsystem is active and configured, we
5144 // will return the min of the cgroup and option 2 results.
5145 // This is required since tools, such as numactl, that
5146 // alter cpu affinity do not update cgroup subsystem
5147 // cpuset configuration files.
5148 int os::active_processor_count() {
5149   // User has overridden the number of active processors
5150   if (ActiveProcessorCount > 0) {
5151     log_trace(os)("active_processor_count: "
5152                   "active processor count set by user : %d",
5153                   ActiveProcessorCount);
5154     return ActiveProcessorCount;
5155   }
5156 
5157   int active_cpus;
5158   if (OSContainer::is_containerized()) {
5159     active_cpus = OSContainer::active_processor_count();
5160     log_trace(os)("active_processor_count: determined by OSContainer: %d",
5161                    active_cpus);
5162   } else {
5163     active_cpus = os::Linux::active_processor_count();
5164   }
5165 
5166   return active_cpus;
5167 }
5168 
5169 void os::set_native_thread_name(const char *name) {
5170   if (Linux::_pthread_setname_np) {
5171     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5172     snprintf(buf, sizeof(buf), "%s", name);
5173     buf[sizeof(buf) - 1] = '\0';
5174     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5175     // ERANGE should not happen; all other errors should just be ignored.
5176     assert(rc != ERANGE, "pthread_setname_np failed");
5177   }
5178 }
5179 
5180 bool os::distribute_processes(uint length, uint* distribution) {
5181   // Not yet implemented.
5182   return false;
5183 }
5184 
5185 bool os::bind_to_processor(uint processor_id) {
5186   // Not yet implemented.
5187   return false;
5188 }
5189 
5190 ///
5191 
5192 void os::SuspendedThreadTask::internal_do_task() {
5193   if (do_suspend(_thread->osthread())) {
5194     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5195     do_task(context);
5196     do_resume(_thread->osthread());
5197   }
5198 }
5199 
5200 ////////////////////////////////////////////////////////////////////////////////
5201 // debug support
5202 
5203 bool os::find(address addr, outputStream* st) {
5204   Dl_info dlinfo;
5205   memset(&dlinfo, 0, sizeof(dlinfo));
5206   if (dladdr(addr, &dlinfo) != 0) {
5207     st->print(PTR_FORMAT ": ", p2i(addr));
5208     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5209       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5210                 p2i(addr) - p2i(dlinfo.dli_saddr));
5211     } else if (dlinfo.dli_fbase != NULL) {
5212       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5213     } else {
5214       st->print("<absolute address>");
5215     }
5216     if (dlinfo.dli_fname != NULL) {
5217       st->print(" in %s", dlinfo.dli_fname);
5218     }
5219     if (dlinfo.dli_fbase != NULL) {
5220       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5221     }
5222     st->cr();
5223 
5224     if (Verbose) {
5225       // decode some bytes around the PC
5226       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5227       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5228       address       lowest = (address) dlinfo.dli_sname;
5229       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5230       if (begin < lowest)  begin = lowest;
5231       Dl_info dlinfo2;
5232       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5233           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5234         end = (address) dlinfo2.dli_saddr;
5235       }
5236       Disassembler::decode(begin, end, st);
5237     }
5238     return true;
5239   }
5240   return false;
5241 }
5242 
5243 ////////////////////////////////////////////////////////////////////////////////
5244 // misc
5245 
5246 // This does not do anything on Linux. This is basically a hook for being
5247 // able to use structured exception handling (thread-local exception filters)
5248 // on, e.g., Win32.
5249 void
5250 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5251                          JavaCallArguments* args, Thread* thread) {
5252   f(value, method, args, thread);
5253 }
5254 
5255 void os::print_statistics() {
5256 }
5257 
5258 bool os::message_box(const char* title, const char* message) {
5259   int i;
5260   fdStream err(defaultStream::error_fd());
5261   for (i = 0; i < 78; i++) err.print_raw("=");
5262   err.cr();
5263   err.print_raw_cr(title);
5264   for (i = 0; i < 78; i++) err.print_raw("-");
5265   err.cr();
5266   err.print_raw_cr(message);
5267   for (i = 0; i < 78; i++) err.print_raw("=");
5268   err.cr();
5269 
5270   char buf[16];
5271   // Prevent process from exiting upon "read error" without consuming all CPU
5272   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5273 
5274   return buf[0] == 'y' || buf[0] == 'Y';
5275 }
5276 
5277 int os::stat(const char *path, struct stat *sbuf) {
5278   char pathbuf[MAX_PATH];
5279   if (strlen(path) > MAX_PATH - 1) {
5280     errno = ENAMETOOLONG;
5281     return -1;
5282   }
5283   os::native_path(strcpy(pathbuf, path));
5284   return ::stat(pathbuf, sbuf);
5285 }
5286 
5287 // Is a (classpath) directory empty?
5288 bool os::dir_is_empty(const char* path) {
5289   DIR *dir = NULL;
5290   struct dirent *ptr;
5291 
5292   dir = opendir(path);
5293   if (dir == NULL) return true;
5294 
5295   // Scan the directory
5296   bool result = true;
5297   char buf[sizeof(struct dirent) + MAX_PATH];
5298   while (result && (ptr = ::readdir(dir)) != NULL) {
5299     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5300       result = false;
5301     }
5302   }
5303   closedir(dir);
5304   return result;
5305 }
5306 
5307 // This code originates from JDK's sysOpen and open64_w
5308 // from src/solaris/hpi/src/system_md.c
5309 
5310 int os::open(const char *path, int oflag, int mode) {
5311   if (strlen(path) > MAX_PATH - 1) {
5312     errno = ENAMETOOLONG;
5313     return -1;
5314   }
5315 
5316   // All file descriptors that are opened in the Java process and not
5317   // specifically destined for a subprocess should have the close-on-exec
5318   // flag set.  If we don't set it, then careless 3rd party native code
5319   // might fork and exec without closing all appropriate file descriptors
5320   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5321   // turn might:
5322   //
5323   // - cause end-of-file to fail to be detected on some file
5324   //   descriptors, resulting in mysterious hangs, or
5325   //
5326   // - might cause an fopen in the subprocess to fail on a system
5327   //   suffering from bug 1085341.
5328   //
5329   // (Yes, the default setting of the close-on-exec flag is a Unix
5330   // design flaw)
5331   //
5332   // See:
5333   // 1085341: 32-bit stdio routines should support file descriptors >255
5334   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5335   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5336   //
5337   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5338   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5339   // because it saves a system call and removes a small window where the flag
5340   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5341   // and we fall back to using FD_CLOEXEC (see below).
5342 #ifdef O_CLOEXEC
5343   oflag |= O_CLOEXEC;
5344 #endif
5345 
5346   int fd = ::open64(path, oflag, mode);
5347   if (fd == -1) return -1;
5348 
5349   //If the open succeeded, the file might still be a directory
5350   {
5351     struct stat64 buf64;
5352     int ret = ::fstat64(fd, &buf64);
5353     int st_mode = buf64.st_mode;
5354 
5355     if (ret != -1) {
5356       if ((st_mode & S_IFMT) == S_IFDIR) {
5357         errno = EISDIR;
5358         ::close(fd);
5359         return -1;
5360       }
5361     } else {
5362       ::close(fd);
5363       return -1;
5364     }
5365   }
5366 
5367 #ifdef FD_CLOEXEC
5368   // Validate that the use of the O_CLOEXEC flag on open above worked.
5369   // With recent kernels, we will perform this check exactly once.
5370   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5371   if (!O_CLOEXEC_is_known_to_work) {
5372     int flags = ::fcntl(fd, F_GETFD);
5373     if (flags != -1) {
5374       if ((flags & FD_CLOEXEC) != 0)
5375         O_CLOEXEC_is_known_to_work = 1;
5376       else
5377         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5378     }
5379   }
5380 #endif
5381 
5382   return fd;
5383 }
5384 
5385 
5386 // create binary file, rewriting existing file if required
5387 int os::create_binary_file(const char* path, bool rewrite_existing) {
5388   int oflags = O_WRONLY | O_CREAT;
5389   if (!rewrite_existing) {
5390     oflags |= O_EXCL;
5391   }
5392   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5393 }
5394 
5395 // return current position of file pointer
5396 jlong os::current_file_offset(int fd) {
5397   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5398 }
5399 
5400 // move file pointer to the specified offset
5401 jlong os::seek_to_file_offset(int fd, jlong offset) {
5402   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5403 }
5404 
5405 // This code originates from JDK's sysAvailable
5406 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5407 
5408 int os::available(int fd, jlong *bytes) {
5409   jlong cur, end;
5410   int mode;
5411   struct stat64 buf64;
5412 
5413   if (::fstat64(fd, &buf64) >= 0) {
5414     mode = buf64.st_mode;
5415     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5416       int n;
5417       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5418         *bytes = n;
5419         return 1;
5420       }
5421     }
5422   }
5423   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5424     return 0;
5425   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5426     return 0;
5427   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5428     return 0;
5429   }
5430   *bytes = end - cur;
5431   return 1;
5432 }
5433 
5434 // Map a block of memory.
5435 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5436                         char *addr, size_t bytes, bool read_only,
5437                         bool allow_exec) {
5438   int prot;
5439   int flags = MAP_PRIVATE;
5440 
5441   if (read_only) {
5442     prot = PROT_READ;
5443   } else {
5444     prot = PROT_READ | PROT_WRITE;
5445   }
5446 
5447   if (allow_exec) {
5448     prot |= PROT_EXEC;
5449   }
5450 
5451   if (addr != NULL) {
5452     flags |= MAP_FIXED;
5453   }
5454 
5455   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5456                                      fd, file_offset);
5457   if (mapped_address == MAP_FAILED) {
5458     return NULL;
5459   }
5460   return mapped_address;
5461 }
5462 
5463 
5464 // Remap a block of memory.
5465 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5466                           char *addr, size_t bytes, bool read_only,
5467                           bool allow_exec) {
5468   // same as map_memory() on this OS
5469   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5470                         allow_exec);
5471 }
5472 
5473 
5474 // Unmap a block of memory.
5475 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5476   return munmap(addr, bytes) == 0;
5477 }
5478 
5479 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5480 
5481 static clockid_t thread_cpu_clockid(Thread* thread) {
5482   pthread_t tid = thread->osthread()->pthread_id();
5483   clockid_t clockid;
5484 
5485   // Get thread clockid
5486   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5487   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5488   return clockid;
5489 }
5490 
5491 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5492 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5493 // of a thread.
5494 //
5495 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5496 // the fast estimate available on the platform.
5497 
5498 jlong os::current_thread_cpu_time() {
5499   if (os::Linux::supports_fast_thread_cpu_time()) {
5500     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5501   } else {
5502     // return user + sys since the cost is the same
5503     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5504   }
5505 }
5506 
5507 jlong os::thread_cpu_time(Thread* thread) {
5508   // consistent with what current_thread_cpu_time() returns
5509   if (os::Linux::supports_fast_thread_cpu_time()) {
5510     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5511   } else {
5512     return slow_thread_cpu_time(thread, true /* user + sys */);
5513   }
5514 }
5515 
5516 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5517   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5518     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5519   } else {
5520     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5521   }
5522 }
5523 
5524 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5525   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5526     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5527   } else {
5528     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5529   }
5530 }
5531 
5532 //  -1 on error.
5533 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5534   pid_t  tid = thread->osthread()->thread_id();
5535   char *s;
5536   char stat[2048];
5537   int statlen;
5538   char proc_name[64];
5539   int count;
5540   long sys_time, user_time;
5541   char cdummy;
5542   int idummy;
5543   long ldummy;
5544   FILE *fp;
5545 
5546   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5547   fp = fopen(proc_name, "r");
5548   if (fp == NULL) return -1;
5549   statlen = fread(stat, 1, 2047, fp);
5550   stat[statlen] = '\0';
5551   fclose(fp);
5552 
5553   // Skip pid and the command string. Note that we could be dealing with
5554   // weird command names, e.g. user could decide to rename java launcher
5555   // to "java 1.4.2 :)", then the stat file would look like
5556   //                1234 (java 1.4.2 :)) R ... ...
5557   // We don't really need to know the command string, just find the last
5558   // occurrence of ")" and then start parsing from there. See bug 4726580.
5559   s = strrchr(stat, ')');
5560   if (s == NULL) return -1;
5561 
5562   // Skip blank chars
5563   do { s++; } while (s && isspace(*s));
5564 
5565   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5566                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5567                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5568                  &user_time, &sys_time);
5569   if (count != 13) return -1;
5570   if (user_sys_cpu_time) {
5571     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5572   } else {
5573     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5574   }
5575 }
5576 
5577 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5578   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5579   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5580   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5581   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5582 }
5583 
5584 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5585   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5586   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5587   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5588   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5589 }
5590 
5591 bool os::is_thread_cpu_time_supported() {
5592   return true;
5593 }
5594 
5595 // System loadavg support.  Returns -1 if load average cannot be obtained.
5596 // Linux doesn't yet have a (official) notion of processor sets,
5597 // so just return the system wide load average.
5598 int os::loadavg(double loadavg[], int nelem) {
5599   return ::getloadavg(loadavg, nelem);
5600 }
5601 
5602 void os::pause() {
5603   char filename[MAX_PATH];
5604   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5605     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5606   } else {
5607     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5608   }
5609 
5610   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5611   if (fd != -1) {
5612     struct stat buf;
5613     ::close(fd);
5614     while (::stat(filename, &buf) == 0) {
5615       (void)::poll(NULL, 0, 100);
5616     }
5617   } else {
5618     jio_fprintf(stderr,
5619                 "Could not open pause file '%s', continuing immediately.\n", filename);
5620   }
5621 }
5622 
5623 extern char** environ;
5624 
5625 // Run the specified command in a separate process. Return its exit value,
5626 // or -1 on failure (e.g. can't fork a new process).
5627 // Unlike system(), this function can be called from signal handler. It
5628 // doesn't block SIGINT et al.
5629 int os::fork_and_exec(char* cmd) {
5630   const char * argv[4] = {"sh", "-c", cmd, NULL};
5631 
5632   pid_t pid = fork();
5633 
5634   if (pid < 0) {
5635     // fork failed
5636     return -1;
5637 
5638   } else if (pid == 0) {
5639     // child process
5640 
5641     execve("/bin/sh", (char* const*)argv, environ);
5642 
5643     // execve failed
5644     _exit(-1);
5645 
5646   } else  {
5647     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5648     // care about the actual exit code, for now.
5649 
5650     int status;
5651 
5652     // Wait for the child process to exit.  This returns immediately if
5653     // the child has already exited. */
5654     while (waitpid(pid, &status, 0) < 0) {
5655       switch (errno) {
5656       case ECHILD: return 0;
5657       case EINTR: break;
5658       default: return -1;
5659       }
5660     }
5661 
5662     if (WIFEXITED(status)) {
5663       // The child exited normally; get its exit code.
5664       return WEXITSTATUS(status);
5665     } else if (WIFSIGNALED(status)) {
5666       // The child exited because of a signal
5667       // The best value to return is 0x80 + signal number,
5668       // because that is what all Unix shells do, and because
5669       // it allows callers to distinguish between process exit and
5670       // process death by signal.
5671       return 0x80 + WTERMSIG(status);
5672     } else {
5673       // Unknown exit code; pass it through
5674       return status;
5675     }
5676   }
5677 }
5678 
5679 // is_headless_jre()
5680 //
5681 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5682 // in order to report if we are running in a headless jre
5683 //
5684 // Since JDK8 xawt/libmawt.so was moved into the same directory
5685 // as libawt.so, and renamed libawt_xawt.so
5686 //
5687 bool os::is_headless_jre() {
5688   struct stat statbuf;
5689   char buf[MAXPATHLEN];
5690   char libmawtpath[MAXPATHLEN];
5691   const char *xawtstr  = "/xawt/libmawt.so";
5692   const char *new_xawtstr = "/libawt_xawt.so";
5693   char *p;
5694 
5695   // Get path to libjvm.so
5696   os::jvm_path(buf, sizeof(buf));
5697 
5698   // Get rid of libjvm.so
5699   p = strrchr(buf, '/');
5700   if (p == NULL) {
5701     return false;
5702   } else {
5703     *p = '\0';
5704   }
5705 
5706   // Get rid of client or server
5707   p = strrchr(buf, '/');
5708   if (p == NULL) {
5709     return false;
5710   } else {
5711     *p = '\0';
5712   }
5713 
5714   // check xawt/libmawt.so
5715   strcpy(libmawtpath, buf);
5716   strcat(libmawtpath, xawtstr);
5717   if (::stat(libmawtpath, &statbuf) == 0) return false;
5718 
5719   // check libawt_xawt.so
5720   strcpy(libmawtpath, buf);
5721   strcat(libmawtpath, new_xawtstr);
5722   if (::stat(libmawtpath, &statbuf) == 0) return false;
5723 
5724   return true;
5725 }
5726 
5727 // Get the default path to the core file
5728 // Returns the length of the string
5729 int os::get_core_path(char* buffer, size_t bufferSize) {
5730   /*
5731    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5732    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5733    */
5734   const int core_pattern_len = 129;
5735   char core_pattern[core_pattern_len] = {0};
5736 
5737   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5738   if (core_pattern_file == -1) {
5739     return -1;
5740   }
5741 
5742   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5743   ::close(core_pattern_file);
5744   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5745     return -1;
5746   }
5747   if (core_pattern[ret-1] == '\n') {
5748     core_pattern[ret-1] = '\0';
5749   } else {
5750     core_pattern[ret] = '\0';
5751   }
5752 
5753   char *pid_pos = strstr(core_pattern, "%p");
5754   int written;
5755 
5756   if (core_pattern[0] == '/') {
5757     written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5758   } else {
5759     char cwd[PATH_MAX];
5760 
5761     const char* p = get_current_directory(cwd, PATH_MAX);
5762     if (p == NULL) {
5763       return -1;
5764     }
5765 
5766     if (core_pattern[0] == '|') {
5767       written = jio_snprintf(buffer, bufferSize,
5768                              "\"%s\" (or dumping to %s/core.%d)",
5769                              &core_pattern[1], p, current_process_id());
5770     } else {
5771       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5772     }
5773   }
5774 
5775   if (written < 0) {
5776     return -1;
5777   }
5778 
5779   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5780     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5781 
5782     if (core_uses_pid_file != -1) {
5783       char core_uses_pid = 0;
5784       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5785       ::close(core_uses_pid_file);
5786 
5787       if (core_uses_pid == '1') {
5788         jio_snprintf(buffer + written, bufferSize - written,
5789                                           ".%d", current_process_id());
5790       }
5791     }
5792   }
5793 
5794   return strlen(buffer);
5795 }
5796 
5797 bool os::start_debugging(char *buf, int buflen) {
5798   int len = (int)strlen(buf);
5799   char *p = &buf[len];
5800 
5801   jio_snprintf(p, buflen-len,
5802                "\n\n"
5803                "Do you want to debug the problem?\n\n"
5804                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5805                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5806                "Otherwise, press RETURN to abort...",
5807                os::current_process_id(), os::current_process_id(),
5808                os::current_thread_id(), os::current_thread_id());
5809 
5810   bool yes = os::message_box("Unexpected Error", buf);
5811 
5812   if (yes) {
5813     // yes, user asked VM to launch debugger
5814     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
5815                  os::current_process_id(), os::current_process_id());
5816 
5817     os::fork_and_exec(buf);
5818     yes = false;
5819   }
5820   return yes;
5821 }
5822 
5823 
5824 // Java/Compiler thread:
5825 //
5826 //   Low memory addresses
5827 // P0 +------------------------+
5828 //    |                        |\  Java thread created by VM does not have glibc
5829 //    |    glibc guard page    | - guard page, attached Java thread usually has
5830 //    |                        |/  1 glibc guard page.
5831 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5832 //    |                        |\
5833 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
5834 //    |                        |/
5835 //    +------------------------+ JavaThread::stack_reserved_zone_base()
5836 //    |                        |\
5837 //    |      Normal Stack      | -
5838 //    |                        |/
5839 // P2 +------------------------+ Thread::stack_base()
5840 //
5841 // Non-Java thread:
5842 //
5843 //   Low memory addresses
5844 // P0 +------------------------+
5845 //    |                        |\
5846 //    |  glibc guard page      | - usually 1 page
5847 //    |                        |/
5848 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5849 //    |                        |\
5850 //    |      Normal Stack      | -
5851 //    |                        |/
5852 // P2 +------------------------+ Thread::stack_base()
5853 //
5854 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
5855 //    returned from pthread_attr_getstack().
5856 // ** Due to NPTL implementation error, linux takes the glibc guard page out
5857 //    of the stack size given in pthread_attr. We work around this for
5858 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
5859 //
5860 #ifndef ZERO
5861 static void current_stack_region(address * bottom, size_t * size) {
5862   if (os::Linux::is_initial_thread()) {
5863     // initial thread needs special handling because pthread_getattr_np()
5864     // may return bogus value.
5865     *bottom = os::Linux::initial_thread_stack_bottom();
5866     *size   = os::Linux::initial_thread_stack_size();
5867   } else {
5868     pthread_attr_t attr;
5869 
5870     int rslt = pthread_getattr_np(pthread_self(), &attr);
5871 
5872     // JVM needs to know exact stack location, abort if it fails
5873     if (rslt != 0) {
5874       if (rslt == ENOMEM) {
5875         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
5876       } else {
5877         fatal("pthread_getattr_np failed with error = %d", rslt);
5878       }
5879     }
5880 
5881     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
5882       fatal("Cannot locate current stack attributes!");
5883     }
5884 
5885     // Work around NPTL stack guard error.
5886     size_t guard_size = 0;
5887     rslt = pthread_attr_getguardsize(&attr, &guard_size);
5888     if (rslt != 0) {
5889       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
5890     }
5891     *bottom += guard_size;
5892     *size   -= guard_size;
5893 
5894     pthread_attr_destroy(&attr);
5895 
5896   }
5897   assert(os::current_stack_pointer() >= *bottom &&
5898          os::current_stack_pointer() < *bottom + *size, "just checking");
5899 }
5900 
5901 address os::current_stack_base() {
5902   address bottom;
5903   size_t size;
5904   current_stack_region(&bottom, &size);
5905   return (bottom + size);
5906 }
5907 
5908 size_t os::current_stack_size() {
5909   // This stack size includes the usable stack and HotSpot guard pages
5910   // (for the threads that have Hotspot guard pages).
5911   address bottom;
5912   size_t size;
5913   current_stack_region(&bottom, &size);
5914   return size;
5915 }
5916 #endif
5917 
5918 static inline struct timespec get_mtime(const char* filename) {
5919   struct stat st;
5920   int ret = os::stat(filename, &st);
5921   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
5922   return st.st_mtim;
5923 }
5924 
5925 int os::compare_file_modified_times(const char* file1, const char* file2) {
5926   struct timespec filetime1 = get_mtime(file1);
5927   struct timespec filetime2 = get_mtime(file2);
5928   int diff = filetime1.tv_sec - filetime2.tv_sec;
5929   if (diff == 0) {
5930     return filetime1.tv_nsec - filetime2.tv_nsec;
5931   }
5932   return diff;
5933 }
5934 
5935 /////////////// Unit tests ///////////////
5936 
5937 #ifndef PRODUCT
5938 
5939 #define test_log(...)              \
5940   do {                             \
5941     if (VerboseInternalVMTests) {  \
5942       tty->print_cr(__VA_ARGS__);  \
5943       tty->flush();                \
5944     }                              \
5945   } while (false)
5946 
5947 class TestReserveMemorySpecial : AllStatic {
5948  public:
5949   static void small_page_write(void* addr, size_t size) {
5950     size_t page_size = os::vm_page_size();
5951 
5952     char* end = (char*)addr + size;
5953     for (char* p = (char*)addr; p < end; p += page_size) {
5954       *p = 1;
5955     }
5956   }
5957 
5958   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
5959     if (!UseHugeTLBFS) {
5960       return;
5961     }
5962 
5963     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
5964 
5965     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
5966 
5967     if (addr != NULL) {
5968       small_page_write(addr, size);
5969 
5970       os::Linux::release_memory_special_huge_tlbfs(addr, size);
5971     }
5972   }
5973 
5974   static void test_reserve_memory_special_huge_tlbfs_only() {
5975     if (!UseHugeTLBFS) {
5976       return;
5977     }
5978 
5979     size_t lp = os::large_page_size();
5980 
5981     for (size_t size = lp; size <= lp * 10; size += lp) {
5982       test_reserve_memory_special_huge_tlbfs_only(size);
5983     }
5984   }
5985 
5986   static void test_reserve_memory_special_huge_tlbfs_mixed() {
5987     size_t lp = os::large_page_size();
5988     size_t ag = os::vm_allocation_granularity();
5989 
5990     // sizes to test
5991     const size_t sizes[] = {
5992       lp, lp + ag, lp + lp / 2, lp * 2,
5993       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
5994       lp * 10, lp * 10 + lp / 2
5995     };
5996     const int num_sizes = sizeof(sizes) / sizeof(size_t);
5997 
5998     // For each size/alignment combination, we test three scenarios:
5999     // 1) with req_addr == NULL
6000     // 2) with a non-null req_addr at which we expect to successfully allocate
6001     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6002     //    expect the allocation to either fail or to ignore req_addr
6003 
6004     // Pre-allocate two areas; they shall be as large as the largest allocation
6005     //  and aligned to the largest alignment we will be testing.
6006     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6007     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6008       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6009       -1, 0);
6010     assert(mapping1 != MAP_FAILED, "should work");
6011 
6012     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6013       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6014       -1, 0);
6015     assert(mapping2 != MAP_FAILED, "should work");
6016 
6017     // Unmap the first mapping, but leave the second mapping intact: the first
6018     // mapping will serve as a value for a "good" req_addr (case 2). The second
6019     // mapping, still intact, as "bad" req_addr (case 3).
6020     ::munmap(mapping1, mapping_size);
6021 
6022     // Case 1
6023     test_log("%s, req_addr NULL:", __FUNCTION__);
6024     test_log("size            align           result");
6025 
6026     for (int i = 0; i < num_sizes; i++) {
6027       const size_t size = sizes[i];
6028       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6029         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6030         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6031                  size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
6032         if (p != NULL) {
6033           assert(is_aligned(p, alignment), "must be");
6034           small_page_write(p, size);
6035           os::Linux::release_memory_special_huge_tlbfs(p, size);
6036         }
6037       }
6038     }
6039 
6040     // Case 2
6041     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6042     test_log("size            align           req_addr         result");
6043 
6044     for (int i = 0; i < num_sizes; i++) {
6045       const size_t size = sizes[i];
6046       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6047         char* const req_addr = align_up(mapping1, alignment);
6048         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6049         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6050                  size, alignment, p2i(req_addr), p2i(p),
6051                  ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6052         if (p != NULL) {
6053           assert(p == req_addr, "must be");
6054           small_page_write(p, size);
6055           os::Linux::release_memory_special_huge_tlbfs(p, size);
6056         }
6057       }
6058     }
6059 
6060     // Case 3
6061     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6062     test_log("size            align           req_addr         result");
6063 
6064     for (int i = 0; i < num_sizes; i++) {
6065       const size_t size = sizes[i];
6066       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6067         char* const req_addr = align_up(mapping2, alignment);
6068         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6069         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6070                  size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6071         // as the area around req_addr contains already existing mappings, the API should always
6072         // return NULL (as per contract, it cannot return another address)
6073         assert(p == NULL, "must be");
6074       }
6075     }
6076 
6077     ::munmap(mapping2, mapping_size);
6078 
6079   }
6080 
6081   static void test_reserve_memory_special_huge_tlbfs() {
6082     if (!UseHugeTLBFS) {
6083       return;
6084     }
6085 
6086     test_reserve_memory_special_huge_tlbfs_only();
6087     test_reserve_memory_special_huge_tlbfs_mixed();
6088   }
6089 
6090   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6091     if (!UseSHM) {
6092       return;
6093     }
6094 
6095     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6096 
6097     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6098 
6099     if (addr != NULL) {
6100       assert(is_aligned(addr, alignment), "Check");
6101       assert(is_aligned(addr, os::large_page_size()), "Check");
6102 
6103       small_page_write(addr, size);
6104 
6105       os::Linux::release_memory_special_shm(addr, size);
6106     }
6107   }
6108 
6109   static void test_reserve_memory_special_shm() {
6110     size_t lp = os::large_page_size();
6111     size_t ag = os::vm_allocation_granularity();
6112 
6113     for (size_t size = ag; size < lp * 3; size += ag) {
6114       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6115         test_reserve_memory_special_shm(size, alignment);
6116       }
6117     }
6118   }
6119 
6120   static void test() {
6121     test_reserve_memory_special_huge_tlbfs();
6122     test_reserve_memory_special_shm();
6123   }
6124 };
6125 
6126 void TestReserveMemorySpecial_test() {
6127   TestReserveMemorySpecial::test();
6128 }
6129 
6130 #endif