1 /*
   2  * Copyright (c) 2018, 2019, Red Hat, Inc. All rights reserved.
   3  *
   4  * This code is free software; you can redistribute it and/or modify it
   5  * under the terms of the GNU General Public License version 2 only, as
   6  * published by the Free Software Foundation.
   7  *
   8  * This code is distributed in the hope that it will be useful, but WITHOUT
   9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  11  * version 2 for more details (a copy is included in the LICENSE file that
  12  * accompanied this code).
  13  *
  14  * You should have received a copy of the GNU General Public License version
  15  * 2 along with this work; if not, write to the Free Software Foundation,
  16  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  17  *
  18  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  19  * or visit www.oracle.com if you need additional information or have any
  20  * questions.
  21  *
  22  */
  23 
  24 #include "precompiled.hpp"
  25 #include "gc/shared/barrierSet.hpp"
  26 #include "gc/shenandoah/shenandoahForwarding.hpp"
  27 #include "gc/shenandoah/shenandoahHeap.hpp"
  28 #include "gc/shenandoah/shenandoahHeuristics.hpp"
  29 #include "gc/shenandoah/shenandoahRuntime.hpp"
  30 #include "gc/shenandoah/shenandoahThreadLocalData.hpp"
  31 #include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp"
  32 #include "gc/shenandoah/c2/shenandoahSupport.hpp"
  33 #include "opto/arraycopynode.hpp"
  34 #include "opto/escape.hpp"
  35 #include "opto/graphKit.hpp"
  36 #include "opto/idealKit.hpp"
  37 #include "opto/macro.hpp"
  38 #include "opto/movenode.hpp"
  39 #include "opto/narrowptrnode.hpp"
  40 #include "opto/rootnode.hpp"
  41 #include "opto/runtime.hpp"
  42 
  43 ShenandoahBarrierSetC2* ShenandoahBarrierSetC2::bsc2() {
  44   return reinterpret_cast<ShenandoahBarrierSetC2*>(BarrierSet::barrier_set()->barrier_set_c2());
  45 }
  46 
  47 ShenandoahBarrierSetC2State::ShenandoahBarrierSetC2State(Arena* comp_arena)
  48   : _enqueue_barriers(new (comp_arena) GrowableArray<ShenandoahEnqueueBarrierNode*>(comp_arena, 8,  0, NULL)),
  49     _load_reference_barriers(new (comp_arena) GrowableArray<ShenandoahLoadReferenceBarrierNode*>(comp_arena, 8,  0, NULL)) {
  50 }
  51 
  52 int ShenandoahBarrierSetC2State::enqueue_barriers_count() const {
  53   return _enqueue_barriers->length();
  54 }
  55 
  56 ShenandoahEnqueueBarrierNode* ShenandoahBarrierSetC2State::enqueue_barrier(int idx) const {
  57   return _enqueue_barriers->at(idx);
  58 }
  59 
  60 void ShenandoahBarrierSetC2State::add_enqueue_barrier(ShenandoahEnqueueBarrierNode * n) {
  61   assert(!_enqueue_barriers->contains(n), "duplicate entry in barrier list");
  62   _enqueue_barriers->append(n);
  63 }
  64 
  65 void ShenandoahBarrierSetC2State::remove_enqueue_barrier(ShenandoahEnqueueBarrierNode * n) {
  66   if (_enqueue_barriers->contains(n)) {
  67     _enqueue_barriers->remove(n);
  68   }
  69 }
  70 
  71 int ShenandoahBarrierSetC2State::load_reference_barriers_count() const {
  72   return _load_reference_barriers->length();
  73 }
  74 
  75 ShenandoahLoadReferenceBarrierNode* ShenandoahBarrierSetC2State::load_reference_barrier(int idx) const {
  76   return _load_reference_barriers->at(idx);
  77 }
  78 
  79 void ShenandoahBarrierSetC2State::add_load_reference_barrier(ShenandoahLoadReferenceBarrierNode * n) {
  80   assert(!_load_reference_barriers->contains(n), "duplicate entry in barrier list");
  81   _load_reference_barriers->append(n);
  82 }
  83 
  84 void ShenandoahBarrierSetC2State::remove_load_reference_barrier(ShenandoahLoadReferenceBarrierNode * n) {
  85   if (_load_reference_barriers->contains(n)) {
  86     _load_reference_barriers->remove(n);
  87   }
  88 }
  89 
  90 Node* ShenandoahBarrierSetC2::shenandoah_storeval_barrier(GraphKit* kit, Node* obj) const {
  91   if (ShenandoahStoreValEnqueueBarrier) {
  92     obj = shenandoah_enqueue_barrier(kit, obj);
  93   }
  94   return obj;
  95 }
  96 
  97 #define __ kit->
  98 
  99 bool ShenandoahBarrierSetC2::satb_can_remove_pre_barrier(GraphKit* kit, PhaseTransform* phase, Node* adr,
 100                                                          BasicType bt, uint adr_idx) const {
 101   intptr_t offset = 0;
 102   Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 103   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
 104 
 105   if (offset == Type::OffsetBot) {
 106     return false; // cannot unalias unless there are precise offsets
 107   }
 108 
 109   if (alloc == NULL) {
 110     return false; // No allocation found
 111   }
 112 
 113   intptr_t size_in_bytes = type2aelembytes(bt);
 114 
 115   Node* mem = __ memory(adr_idx); // start searching here...
 116 
 117   for (int cnt = 0; cnt < 50; cnt++) {
 118 
 119     if (mem->is_Store()) {
 120 
 121       Node* st_adr = mem->in(MemNode::Address);
 122       intptr_t st_offset = 0;
 123       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 124 
 125       if (st_base == NULL) {
 126         break; // inscrutable pointer
 127       }
 128 
 129       // Break we have found a store with same base and offset as ours so break
 130       if (st_base == base && st_offset == offset) {
 131         break;
 132       }
 133 
 134       if (st_offset != offset && st_offset != Type::OffsetBot) {
 135         const int MAX_STORE = BytesPerLong;
 136         if (st_offset >= offset + size_in_bytes ||
 137             st_offset <= offset - MAX_STORE ||
 138             st_offset <= offset - mem->as_Store()->memory_size()) {
 139           // Success:  The offsets are provably independent.
 140           // (You may ask, why not just test st_offset != offset and be done?
 141           // The answer is that stores of different sizes can co-exist
 142           // in the same sequence of RawMem effects.  We sometimes initialize
 143           // a whole 'tile' of array elements with a single jint or jlong.)
 144           mem = mem->in(MemNode::Memory);
 145           continue; // advance through independent store memory
 146         }
 147       }
 148 
 149       if (st_base != base
 150           && MemNode::detect_ptr_independence(base, alloc, st_base,
 151                                               AllocateNode::Ideal_allocation(st_base, phase),
 152                                               phase)) {
 153         // Success:  The bases are provably independent.
 154         mem = mem->in(MemNode::Memory);
 155         continue; // advance through independent store memory
 156       }
 157     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 158 
 159       InitializeNode* st_init = mem->in(0)->as_Initialize();
 160       AllocateNode* st_alloc = st_init->allocation();
 161 
 162       // Make sure that we are looking at the same allocation site.
 163       // The alloc variable is guaranteed to not be null here from earlier check.
 164       if (alloc == st_alloc) {
 165         // Check that the initialization is storing NULL so that no previous store
 166         // has been moved up and directly write a reference
 167         Node* captured_store = st_init->find_captured_store(offset,
 168                                                             type2aelembytes(T_OBJECT),
 169                                                             phase);
 170         if (captured_store == NULL || captured_store == st_init->zero_memory()) {
 171           return true;
 172         }
 173       }
 174     }
 175 
 176     // Unless there is an explicit 'continue', we must bail out here,
 177     // because 'mem' is an inscrutable memory state (e.g., a call).
 178     break;
 179   }
 180 
 181   return false;
 182 }
 183 
 184 #undef __
 185 #define __ ideal.
 186 
 187 void ShenandoahBarrierSetC2::satb_write_barrier_pre(GraphKit* kit,
 188                                                     bool do_load,
 189                                                     Node* obj,
 190                                                     Node* adr,
 191                                                     uint alias_idx,
 192                                                     Node* val,
 193                                                     const TypeOopPtr* val_type,
 194                                                     Node* pre_val,
 195                                                     BasicType bt) const {
 196   // Some sanity checks
 197   // Note: val is unused in this routine.
 198 
 199   if (do_load) {
 200     // We need to generate the load of the previous value
 201     assert(obj != NULL, "must have a base");
 202     assert(adr != NULL, "where are loading from?");
 203     assert(pre_val == NULL, "loaded already?");
 204     assert(val_type != NULL, "need a type");
 205 
 206     if (ReduceInitialCardMarks
 207         && satb_can_remove_pre_barrier(kit, &kit->gvn(), adr, bt, alias_idx)) {
 208       return;
 209     }
 210 
 211   } else {
 212     // In this case both val_type and alias_idx are unused.
 213     assert(pre_val != NULL, "must be loaded already");
 214     // Nothing to be done if pre_val is null.
 215     if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
 216     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
 217   }
 218   assert(bt == T_OBJECT, "or we shouldn't be here");
 219 
 220   IdealKit ideal(kit, true);
 221 
 222   Node* tls = __ thread(); // ThreadLocalStorage
 223 
 224   Node* no_base = __ top();
 225   Node* zero  = __ ConI(0);
 226   Node* zeroX = __ ConX(0);
 227 
 228   float likely  = PROB_LIKELY(0.999);
 229   float unlikely  = PROB_UNLIKELY(0.999);
 230 
 231   // Offsets into the thread
 232   const int index_offset   = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_index_offset());
 233   const int buffer_offset  = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset());
 234 
 235   // Now the actual pointers into the thread
 236   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
 237   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
 238 
 239   // Now some of the values
 240   Node* marking;
 241   Node* gc_state = __ AddP(no_base, tls, __ ConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset())));
 242   Node* ld = __ load(__ ctrl(), gc_state, TypeInt::BYTE, T_BYTE, Compile::AliasIdxRaw);
 243   marking = __ AndI(ld, __ ConI(ShenandoahHeap::MARKING));
 244   assert(ShenandoahBarrierC2Support::is_gc_state_load(ld), "Should match the shape");
 245 
 246   // if (!marking)
 247   __ if_then(marking, BoolTest::ne, zero, unlikely); {
 248     BasicType index_bt = TypeX_X->basic_type();
 249     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 SATBMarkQueue::_index with wrong size.");
 250     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
 251 
 252     if (do_load) {
 253       // load original value
 254       // alias_idx correct??
 255       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
 256     }
 257 
 258     // if (pre_val != NULL)
 259     __ if_then(pre_val, BoolTest::ne, kit->null()); {
 260       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
 261 
 262       // is the queue for this thread full?
 263       __ if_then(index, BoolTest::ne, zeroX, likely); {
 264 
 265         // decrement the index
 266         Node* next_index = kit->gvn().transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
 267 
 268         // Now get the buffer location we will log the previous value into and store it
 269         Node *log_addr = __ AddP(no_base, buffer, next_index);
 270         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
 271         // update the index
 272         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
 273 
 274       } __ else_(); {
 275 
 276         // logging buffer is full, call the runtime
 277         const TypeFunc *tf = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type();
 278         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry), "shenandoah_wb_pre", pre_val, tls);
 279       } __ end_if();  // (!index)
 280     } __ end_if();  // (pre_val != NULL)
 281   } __ end_if();  // (!marking)
 282 
 283   // Final sync IdealKit and GraphKit.
 284   kit->final_sync(ideal);
 285 
 286   if (ShenandoahSATBBarrier && adr != NULL) {
 287     Node* c = kit->control();
 288     Node* call = c->in(1)->in(1)->in(1)->in(0);
 289     assert(is_shenandoah_wb_pre_call(call), "shenandoah_wb_pre call expected");
 290     call->add_req(adr);
 291   }
 292 }
 293 
 294 bool ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(Node* call) {
 295   return call->is_CallLeaf() &&
 296          call->as_CallLeaf()->entry_point() == CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry);
 297 }
 298 
 299 bool ShenandoahBarrierSetC2::is_shenandoah_lrb_call(Node* call) {
 300   if (!call->is_CallLeaf()) {
 301     return false;
 302   }
 303 
 304   address entry_point = call->as_CallLeaf()->entry_point();
 305   return (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier)) ||
 306          (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_narrow)) ||
 307          (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_native));
 308 }
 309 
 310 bool ShenandoahBarrierSetC2::is_shenandoah_marking_if(PhaseTransform *phase, Node* n) {
 311   if (n->Opcode() != Op_If) {
 312     return false;
 313   }
 314 
 315   Node* bol = n->in(1);
 316   assert(bol->is_Bool(), "");
 317   Node* cmpx = bol->in(1);
 318   if (bol->as_Bool()->_test._test == BoolTest::ne &&
 319       cmpx->is_Cmp() && cmpx->in(2) == phase->intcon(0) &&
 320       is_shenandoah_state_load(cmpx->in(1)->in(1)) &&
 321       cmpx->in(1)->in(2)->is_Con() &&
 322       cmpx->in(1)->in(2) == phase->intcon(ShenandoahHeap::MARKING)) {
 323     return true;
 324   }
 325 
 326   return false;
 327 }
 328 
 329 bool ShenandoahBarrierSetC2::is_shenandoah_state_load(Node* n) {
 330   if (!n->is_Load()) return false;
 331   const int state_offset = in_bytes(ShenandoahThreadLocalData::gc_state_offset());
 332   return n->in(2)->is_AddP() && n->in(2)->in(2)->Opcode() == Op_ThreadLocal
 333          && n->in(2)->in(3)->is_Con()
 334          && n->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == state_offset;
 335 }
 336 
 337 void ShenandoahBarrierSetC2::shenandoah_write_barrier_pre(GraphKit* kit,
 338                                                           bool do_load,
 339                                                           Node* obj,
 340                                                           Node* adr,
 341                                                           uint alias_idx,
 342                                                           Node* val,
 343                                                           const TypeOopPtr* val_type,
 344                                                           Node* pre_val,
 345                                                           BasicType bt) const {
 346   if (ShenandoahSATBBarrier) {
 347     IdealKit ideal(kit);
 348     kit->sync_kit(ideal);
 349 
 350     satb_write_barrier_pre(kit, do_load, obj, adr, alias_idx, val, val_type, pre_val, bt);
 351 
 352     ideal.sync_kit(kit);
 353     kit->final_sync(ideal);
 354   }
 355 }
 356 
 357 Node* ShenandoahBarrierSetC2::shenandoah_enqueue_barrier(GraphKit* kit, Node* pre_val) const {
 358   return kit->gvn().transform(new ShenandoahEnqueueBarrierNode(pre_val));
 359 }
 360 
 361 // Helper that guards and inserts a pre-barrier.
 362 void ShenandoahBarrierSetC2::insert_pre_barrier(GraphKit* kit, Node* base_oop, Node* offset,
 363                                                 Node* pre_val, bool need_mem_bar) const {
 364   // We could be accessing the referent field of a reference object. If so, when G1
 365   // is enabled, we need to log the value in the referent field in an SATB buffer.
 366   // This routine performs some compile time filters and generates suitable
 367   // runtime filters that guard the pre-barrier code.
 368   // Also add memory barrier for non volatile load from the referent field
 369   // to prevent commoning of loads across safepoint.
 370 
 371   // Some compile time checks.
 372 
 373   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
 374   const TypeX* otype = offset->find_intptr_t_type();
 375   if (otype != NULL && otype->is_con() &&
 376       otype->get_con() != java_lang_ref_Reference::referent_offset) {
 377     // Constant offset but not the reference_offset so just return
 378     return;
 379   }
 380 
 381   // We only need to generate the runtime guards for instances.
 382   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
 383   if (btype != NULL) {
 384     if (btype->isa_aryptr()) {
 385       // Array type so nothing to do
 386       return;
 387     }
 388 
 389     const TypeInstPtr* itype = btype->isa_instptr();
 390     if (itype != NULL) {
 391       // Can the klass of base_oop be statically determined to be
 392       // _not_ a sub-class of Reference and _not_ Object?
 393       ciKlass* klass = itype->klass();
 394       if ( klass->is_loaded() &&
 395           !klass->is_subtype_of(kit->env()->Reference_klass()) &&
 396           !kit->env()->Object_klass()->is_subtype_of(klass)) {
 397         return;
 398       }
 399     }
 400   }
 401 
 402   // The compile time filters did not reject base_oop/offset so
 403   // we need to generate the following runtime filters
 404   //
 405   // if (offset == java_lang_ref_Reference::_reference_offset) {
 406   //   if (instance_of(base, java.lang.ref.Reference)) {
 407   //     pre_barrier(_, pre_val, ...);
 408   //   }
 409   // }
 410 
 411   float likely   = PROB_LIKELY(  0.999);
 412   float unlikely = PROB_UNLIKELY(0.999);
 413 
 414   IdealKit ideal(kit);
 415 
 416   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
 417 
 418   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
 419       // Update graphKit memory and control from IdealKit.
 420       kit->sync_kit(ideal);
 421 
 422       Node* ref_klass_con = kit->makecon(TypeKlassPtr::make(kit->env()->Reference_klass()));
 423       Node* is_instof = kit->gen_instanceof(base_oop, ref_klass_con);
 424 
 425       // Update IdealKit memory and control from graphKit.
 426       __ sync_kit(kit);
 427 
 428       Node* one = __ ConI(1);
 429       // is_instof == 0 if base_oop == NULL
 430       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
 431 
 432         // Update graphKit from IdeakKit.
 433         kit->sync_kit(ideal);
 434 
 435         // Use the pre-barrier to record the value in the referent field
 436         satb_write_barrier_pre(kit, false /* do_load */,
 437                                NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
 438                                pre_val /* pre_val */,
 439                                T_OBJECT);
 440         if (need_mem_bar) {
 441           // Add memory barrier to prevent commoning reads from this field
 442           // across safepoint since GC can change its value.
 443           kit->insert_mem_bar(Op_MemBarCPUOrder);
 444         }
 445         // Update IdealKit from graphKit.
 446         __ sync_kit(kit);
 447 
 448       } __ end_if(); // _ref_type != ref_none
 449   } __ end_if(); // offset == referent_offset
 450 
 451   // Final sync IdealKit and GraphKit.
 452   kit->final_sync(ideal);
 453 }
 454 
 455 #undef __
 456 
 457 const TypeFunc* ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type() {
 458   const Type **fields = TypeTuple::fields(2);
 459   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 460   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 461   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 462 
 463   // create result type (range)
 464   fields = TypeTuple::fields(0);
 465   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 466 
 467   return TypeFunc::make(domain, range);
 468 }
 469 
 470 const TypeFunc* ShenandoahBarrierSetC2::shenandoah_clone_barrier_Type() {
 471   const Type **fields = TypeTuple::fields(1);
 472   fields[TypeFunc::Parms+0] = TypeOopPtr::NOTNULL; // src oop
 473   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 474 
 475   // create result type (range)
 476   fields = TypeTuple::fields(0);
 477   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 478 
 479   return TypeFunc::make(domain, range);
 480 }
 481 
 482 const TypeFunc* ShenandoahBarrierSetC2::shenandoah_load_reference_barrier_Type() {
 483   const Type **fields = TypeTuple::fields(2);
 484   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 485   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // original load address
 486 
 487   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 488 
 489   // create result type (range)
 490   fields = TypeTuple::fields(1);
 491   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;
 492   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 493 
 494   return TypeFunc::make(domain, range);
 495 }
 496 
 497 Node* ShenandoahBarrierSetC2::store_at_resolved(C2Access& access, C2AccessValue& val) const {
 498   DecoratorSet decorators = access.decorators();
 499 
 500   const TypePtr* adr_type = access.addr().type();
 501   Node* adr = access.addr().node();
 502 
 503   bool anonymous = (decorators & ON_UNKNOWN_OOP_REF) != 0;
 504   bool on_heap = (decorators & IN_HEAP) != 0;
 505 
 506   if (!access.is_oop() || (!on_heap && !anonymous)) {
 507     return BarrierSetC2::store_at_resolved(access, val);
 508   }
 509 
 510   if (access.is_parse_access()) {
 511     C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access);
 512     GraphKit* kit = parse_access.kit();
 513 
 514     uint adr_idx = kit->C->get_alias_index(adr_type);
 515     assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
 516     Node* value = val.node();
 517     value = shenandoah_storeval_barrier(kit, value);
 518     val.set_node(value);
 519     shenandoah_write_barrier_pre(kit, true /* do_load */, /*kit->control(),*/ access.base(), adr, adr_idx, val.node(),
 520                                  static_cast<const TypeOopPtr*>(val.type()), NULL /* pre_val */, access.type());
 521   } else {
 522     assert(access.is_opt_access(), "only for optimization passes");
 523     assert(((decorators & C2_TIGHTLY_COUPLED_ALLOC) != 0 || !ShenandoahSATBBarrier) && (decorators & C2_ARRAY_COPY) != 0, "unexpected caller of this code");
 524     C2OptAccess& opt_access = static_cast<C2OptAccess&>(access);
 525     PhaseGVN& gvn =  opt_access.gvn();
 526     MergeMemNode* mm = opt_access.mem();
 527 
 528     if (ShenandoahStoreValEnqueueBarrier) {
 529       Node* enqueue = gvn.transform(new ShenandoahEnqueueBarrierNode(val.node()));
 530       val.set_node(enqueue);
 531     }
 532   }
 533   return BarrierSetC2::store_at_resolved(access, val);
 534 }
 535 
 536 Node* ShenandoahBarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const {
 537   DecoratorSet decorators = access.decorators();
 538   BasicType type = access.type();
 539 
 540   assert((decorators & AS_RAW) == 0, "Unexpected decorator");
 541   assert((decorators & AS_NO_KEEPALIVE) == 0, "Unexpected decorator");
 542 
 543   Node* adr = access.addr().node();
 544   Node* obj = access.base();
 545 
 546   bool mismatched = (decorators & C2_MISMATCHED) != 0;
 547   bool unknown = (decorators & ON_UNKNOWN_OOP_REF) != 0;
 548   bool on_heap = (decorators & IN_HEAP) != 0;
 549   bool on_weak_ref = (decorators & (ON_WEAK_OOP_REF | ON_PHANTOM_OOP_REF)) != 0;
 550   bool is_unordered = (decorators & MO_UNORDERED) != 0;
 551   bool need_cpu_mem_bar = !is_unordered || mismatched || !on_heap;
 552 
 553   Node* top = Compile::current()->top();
 554 
 555   Node* offset = adr->is_AddP() ? adr->in(AddPNode::Offset) : top;
 556   Node* load = BarrierSetC2::load_at_resolved(access, val_type);
 557   if (!ShenandoahBarrierSet::need_load_reference_barrier(decorators, type)) {
 558     return load;
 559   }
 560 
 561   load = new ShenandoahLoadReferenceBarrierNode(NULL, load, ShenandoahBarrierSet::use_native_load_reference_barrier(decorators, type));
 562   if (access.is_parse_access()) {
 563     load = static_cast<C2ParseAccess &>(access).kit()->gvn().transform(load);
 564   } else {
 565     load = static_cast<C2OptAccess &>(access).gvn().transform(load);
 566   }
 567 
 568   if (!ShenandoahBarrierSet::need_keep_alive_barrier(decorators, type)) {
 569     return load;
 570   }
 571   // If we are reading the value of the referent field of a Reference
 572   // object (either by using Unsafe directly or through reflection)
 573   // then, if SATB is enabled, we need to record the referent in an
 574   // SATB log buffer using the pre-barrier mechanism.
 575   // Also we need to add memory barrier to prevent commoning reads
 576   // from this field across safepoint since GC can change its value.
 577   if (unknown && (offset == top || obj == top)) {
 578     return load;
 579   }
 580 
 581   assert(access.is_parse_access(), "entry not supported at optimization time");
 582   C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access);
 583   GraphKit* kit = parse_access.kit();
 584 
 585   if (on_weak_ref) {
 586     // Use the pre-barrier to record the value in the referent field
 587     satb_write_barrier_pre(kit, false /* do_load */,
 588                            NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
 589                            load /* pre_val */, T_OBJECT);
 590     // Add memory barrier to prevent commoning reads from this field
 591     // across safepoint since GC can change its value.
 592     kit->insert_mem_bar(Op_MemBarCPUOrder);
 593   } else if (unknown) {
 594     // We do not require a mem bar inside pre_barrier if need_mem_bar
 595     // is set: the barriers would be emitted by us.
 596     insert_pre_barrier(kit, obj, offset, load, !need_cpu_mem_bar);
 597   }
 598 
 599   return load;
 600 }
 601 
 602 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
 603                                                    Node* new_val, const Type* value_type) const {
 604   GraphKit* kit = access.kit();
 605   if (access.is_oop()) {
 606     new_val = shenandoah_storeval_barrier(kit, new_val);
 607     shenandoah_write_barrier_pre(kit, false /* do_load */,
 608                                  NULL, NULL, max_juint, NULL, NULL,
 609                                  expected_val /* pre_val */, T_OBJECT);
 610 
 611     MemNode::MemOrd mo = access.mem_node_mo();
 612     Node* mem = access.memory();
 613     Node* adr = access.addr().node();
 614     const TypePtr* adr_type = access.addr().type();
 615     Node* load_store = NULL;
 616 
 617 #ifdef _LP64
 618     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 619       Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
 620       Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop()));
 621       if (ShenandoahCASBarrier) {
 622         load_store = kit->gvn().transform(new ShenandoahCompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
 623       } else {
 624         load_store = kit->gvn().transform(new CompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
 625       }
 626     } else
 627 #endif
 628     {
 629       if (ShenandoahCASBarrier) {
 630         load_store = kit->gvn().transform(new ShenandoahCompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo));
 631       } else {
 632         load_store = kit->gvn().transform(new CompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo));
 633       }
 634     }
 635 
 636     access.set_raw_access(load_store);
 637     pin_atomic_op(access);
 638 
 639 #ifdef _LP64
 640     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 641       load_store = kit->gvn().transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
 642     }
 643 #endif
 644     load_store = kit->gvn().transform(new ShenandoahLoadReferenceBarrierNode(NULL, load_store, false));
 645     return load_store;
 646   }
 647   return BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type);
 648 }
 649 
 650 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
 651                                                               Node* new_val, const Type* value_type) const {
 652   GraphKit* kit = access.kit();
 653   if (access.is_oop()) {
 654     new_val = shenandoah_storeval_barrier(kit, new_val);
 655     shenandoah_write_barrier_pre(kit, false /* do_load */,
 656                                  NULL, NULL, max_juint, NULL, NULL,
 657                                  expected_val /* pre_val */, T_OBJECT);
 658     DecoratorSet decorators = access.decorators();
 659     MemNode::MemOrd mo = access.mem_node_mo();
 660     Node* mem = access.memory();
 661     bool is_weak_cas = (decorators & C2_WEAK_CMPXCHG) != 0;
 662     Node* load_store = NULL;
 663     Node* adr = access.addr().node();
 664 #ifdef _LP64
 665     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 666       Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
 667       Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop()));
 668       if (ShenandoahCASBarrier) {
 669         if (is_weak_cas) {
 670           load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 671         } else {
 672           load_store = kit->gvn().transform(new ShenandoahCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 673         }
 674       } else {
 675         if (is_weak_cas) {
 676           load_store = kit->gvn().transform(new WeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 677         } else {
 678           load_store = kit->gvn().transform(new CompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 679         }
 680       }
 681     } else
 682 #endif
 683     {
 684       if (ShenandoahCASBarrier) {
 685         if (is_weak_cas) {
 686           load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 687         } else {
 688           load_store = kit->gvn().transform(new ShenandoahCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 689         }
 690       } else {
 691         if (is_weak_cas) {
 692           load_store = kit->gvn().transform(new WeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 693         } else {
 694           load_store = kit->gvn().transform(new CompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 695         }
 696       }
 697     }
 698     access.set_raw_access(load_store);
 699     pin_atomic_op(access);
 700     return load_store;
 701   }
 702   return BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type);
 703 }
 704 
 705 Node* ShenandoahBarrierSetC2::atomic_xchg_at_resolved(C2AtomicParseAccess& access, Node* val, const Type* value_type) const {
 706   GraphKit* kit = access.kit();
 707   if (access.is_oop()) {
 708     val = shenandoah_storeval_barrier(kit, val);
 709   }
 710   Node* result = BarrierSetC2::atomic_xchg_at_resolved(access, val, value_type);
 711   if (access.is_oop()) {
 712     result = kit->gvn().transform(new ShenandoahLoadReferenceBarrierNode(NULL, result, false));
 713     shenandoah_write_barrier_pre(kit, false /* do_load */,
 714                                  NULL, NULL, max_juint, NULL, NULL,
 715                                  result /* pre_val */, T_OBJECT);
 716   }
 717   return result;
 718 }
 719 
 720 // Support for GC barriers emitted during parsing
 721 bool ShenandoahBarrierSetC2::is_gc_barrier_node(Node* node) const {
 722   if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) return true;
 723   if (node->Opcode() != Op_CallLeaf && node->Opcode() != Op_CallLeafNoFP) {
 724     return false;
 725   }
 726   CallLeafNode *call = node->as_CallLeaf();
 727   if (call->_name == NULL) {
 728     return false;
 729   }
 730 
 731   return strcmp(call->_name, "shenandoah_clone_barrier") == 0 ||
 732          strcmp(call->_name, "shenandoah_cas_obj") == 0 ||
 733          strcmp(call->_name, "shenandoah_wb_pre") == 0;
 734 }
 735 
 736 Node* ShenandoahBarrierSetC2::step_over_gc_barrier(Node* c) const {
 737   if (c->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
 738     return c->in(ShenandoahLoadReferenceBarrierNode::ValueIn);
 739   }
 740   if (c->Opcode() == Op_ShenandoahEnqueueBarrier) {
 741     c = c->in(1);
 742   }
 743   return c;
 744 }
 745 
 746 bool ShenandoahBarrierSetC2::expand_barriers(Compile* C, PhaseIterGVN& igvn) const {
 747   return !ShenandoahBarrierC2Support::expand(C, igvn);
 748 }
 749 
 750 bool ShenandoahBarrierSetC2::optimize_loops(PhaseIdealLoop* phase, LoopOptsMode mode, VectorSet& visited, Node_Stack& nstack, Node_List& worklist) const {
 751   if (mode == LoopOptsShenandoahExpand) {
 752     assert(UseShenandoahGC, "only for shenandoah");
 753     ShenandoahBarrierC2Support::pin_and_expand(phase);
 754     return true;
 755   } else if (mode == LoopOptsShenandoahPostExpand) {
 756     assert(UseShenandoahGC, "only for shenandoah");
 757     visited.Clear();
 758     ShenandoahBarrierC2Support::optimize_after_expansion(visited, nstack, worklist, phase);
 759     return true;
 760   }
 761   return false;
 762 }
 763 
 764 bool ShenandoahBarrierSetC2::array_copy_requires_gc_barriers(bool tightly_coupled_alloc, BasicType type, bool is_clone, ArrayCopyPhase phase) const {
 765   bool is_oop = is_reference_type(type);
 766   if (!is_oop) {
 767     return false;
 768   }
 769   if (tightly_coupled_alloc) {
 770     if (phase == Optimization) {
 771       return false;
 772     }
 773     return !is_clone;
 774   }
 775   if (phase == Optimization) {
 776     return !ShenandoahStoreValEnqueueBarrier;
 777   }
 778   return true;
 779 }
 780 
 781 bool ShenandoahBarrierSetC2::clone_needs_barrier(Node* src, PhaseGVN& gvn) {
 782   const TypeOopPtr* src_type = gvn.type(src)->is_oopptr();
 783   if (src_type->isa_instptr() != NULL) {
 784     ciInstanceKlass* ik = src_type->klass()->as_instance_klass();
 785     if ((src_type->klass_is_exact() || (!ik->is_interface() && !ik->has_subklass())) && !ik->has_injected_fields()) {
 786       if (ik->has_object_fields()) {
 787         return true;
 788       } else {
 789         if (!src_type->klass_is_exact()) {
 790           Compile::current()->dependencies()->assert_leaf_type(ik);
 791         }
 792       }
 793     } else {
 794       return true;
 795         }
 796   } else if (src_type->isa_aryptr()) {
 797     BasicType src_elem  = src_type->klass()->as_array_klass()->element_type()->basic_type();
 798     if (is_reference_type(src_elem)) {
 799       return true;
 800     }
 801   } else {
 802     return true;
 803   }
 804   return false;
 805 }
 806 
 807 void ShenandoahBarrierSetC2::clone_at_expansion(PhaseMacroExpand* phase, ArrayCopyNode* ac) const {
 808   Node* ctrl = ac->in(TypeFunc::Control);
 809   Node* mem = ac->in(TypeFunc::Memory);
 810   Node* src = ac->in(ArrayCopyNode::Src);
 811   Node* src_offset = ac->in(ArrayCopyNode::SrcPos);
 812   Node* dest = ac->in(ArrayCopyNode::Dest);
 813   Node* dest_offset = ac->in(ArrayCopyNode::DestPos);
 814   Node* length = ac->in(ArrayCopyNode::Length);
 815   assert (src_offset == NULL && dest_offset == NULL, "for clone offsets should be null");
 816   assert (src->is_AddP(), "for clone the src should be the interior ptr");
 817   assert (dest->is_AddP(), "for clone the dst should be the interior ptr");
 818 
 819   if (ShenandoahCloneBarrier && clone_needs_barrier(src, phase->igvn())) {
 820     // Check if heap is has forwarded objects. If it does, we need to call into the special
 821     // routine that would fix up source references before we can continue.
 822 
 823     enum { _heap_stable = 1, _heap_unstable, PATH_LIMIT };
 824     Node* region = new RegionNode(PATH_LIMIT);
 825     Node* mem_phi = new PhiNode(region, Type::MEMORY, TypeRawPtr::BOTTOM);
 826 
 827     Node* thread = phase->transform_later(new ThreadLocalNode());
 828     Node* offset = phase->igvn().MakeConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset()));
 829     Node* gc_state_addr = phase->transform_later(new AddPNode(phase->C->top(), thread, offset));
 830 
 831     uint gc_state_idx = Compile::AliasIdxRaw;
 832     const TypePtr* gc_state_adr_type = NULL; // debug-mode-only argument
 833     debug_only(gc_state_adr_type = phase->C->get_adr_type(gc_state_idx));
 834 
 835     Node* gc_state    = phase->transform_later(new LoadBNode(ctrl, mem, gc_state_addr, gc_state_adr_type, TypeInt::BYTE, MemNode::unordered));
 836     Node* stable_and  = phase->transform_later(new AndINode(gc_state, phase->igvn().intcon(ShenandoahHeap::HAS_FORWARDED)));
 837     Node* stable_cmp  = phase->transform_later(new CmpINode(stable_and, phase->igvn().zerocon(T_INT)));
 838     Node* stable_test = phase->transform_later(new BoolNode(stable_cmp, BoolTest::ne));
 839 
 840     IfNode* stable_iff  = phase->transform_later(new IfNode(ctrl, stable_test, PROB_UNLIKELY(0.999), COUNT_UNKNOWN))->as_If();
 841     Node* stable_ctrl   = phase->transform_later(new IfFalseNode(stable_iff));
 842     Node* unstable_ctrl = phase->transform_later(new IfTrueNode(stable_iff));
 843 
 844     // Heap is stable, no need to do anything additional
 845     region->init_req(_heap_stable, stable_ctrl);
 846     mem_phi->init_req(_heap_stable, mem);
 847 
 848     // Heap is unstable, call into clone barrier stub
 849     Node* call = phase->make_leaf_call(unstable_ctrl, mem,
 850                     ShenandoahBarrierSetC2::shenandoah_clone_barrier_Type(),
 851                     CAST_FROM_FN_PTR(address, ShenandoahRuntime::shenandoah_clone_barrier),
 852                     "shenandoah_clone",
 853                     TypeRawPtr::BOTTOM,
 854                     src->in(AddPNode::Base));
 855     call = phase->transform_later(call);
 856 
 857     ctrl = phase->transform_later(new ProjNode(call, TypeFunc::Control));
 858     mem = phase->transform_later(new ProjNode(call, TypeFunc::Memory));
 859     region->init_req(_heap_unstable, ctrl);
 860     mem_phi->init_req(_heap_unstable, mem);
 861 
 862     // Wire up the actual arraycopy stub now
 863     ctrl = phase->transform_later(region);
 864     mem = phase->transform_later(mem_phi);
 865 
 866     const char* name = "arraycopy";
 867     call = phase->make_leaf_call(ctrl, mem,
 868                                  OptoRuntime::fast_arraycopy_Type(),
 869                                  phase->basictype2arraycopy(T_LONG, NULL, NULL, true, name, true),
 870                                  name, TypeRawPtr::BOTTOM,
 871                                  src, dest, length
 872                                  LP64_ONLY(COMMA phase->top()));
 873     call = phase->transform_later(call);
 874 
 875     // Hook up the whole thing into the graph
 876     phase->igvn().replace_node(ac, call);
 877   } else {
 878     BarrierSetC2::clone_at_expansion(phase, ac);
 879   }
 880 }
 881 
 882 
 883 // Support for macro expanded GC barriers
 884 void ShenandoahBarrierSetC2::register_potential_barrier_node(Node* node) const {
 885   if (node->Opcode() == Op_ShenandoahEnqueueBarrier) {
 886     state()->add_enqueue_barrier((ShenandoahEnqueueBarrierNode*) node);
 887   }
 888   if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
 889     state()->add_load_reference_barrier((ShenandoahLoadReferenceBarrierNode*) node);
 890   }
 891 }
 892 
 893 void ShenandoahBarrierSetC2::unregister_potential_barrier_node(Node* node) const {
 894   if (node->Opcode() == Op_ShenandoahEnqueueBarrier) {
 895     state()->remove_enqueue_barrier((ShenandoahEnqueueBarrierNode*) node);
 896   }
 897   if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
 898     state()->remove_load_reference_barrier((ShenandoahLoadReferenceBarrierNode*) node);
 899   }
 900 }
 901 
 902 void ShenandoahBarrierSetC2::eliminate_gc_barrier(PhaseMacroExpand* macro, Node* n) const {
 903   if (is_shenandoah_wb_pre_call(n)) {
 904     shenandoah_eliminate_wb_pre(n, &macro->igvn());
 905   }
 906 }
 907 
 908 void ShenandoahBarrierSetC2::shenandoah_eliminate_wb_pre(Node* call, PhaseIterGVN* igvn) const {
 909   assert(UseShenandoahGC && is_shenandoah_wb_pre_call(call), "");
 910   Node* c = call->as_Call()->proj_out(TypeFunc::Control);
 911   c = c->unique_ctrl_out();
 912   assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
 913   c = c->unique_ctrl_out();
 914   assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
 915   Node* iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0);
 916   assert(iff->is_If(), "expect test");
 917   if (!is_shenandoah_marking_if(igvn, iff)) {
 918     c = c->unique_ctrl_out();
 919     assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
 920     iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0);
 921     assert(is_shenandoah_marking_if(igvn, iff), "expect marking test");
 922   }
 923   Node* cmpx = iff->in(1)->in(1);
 924   igvn->replace_node(cmpx, igvn->makecon(TypeInt::CC_EQ));
 925   igvn->rehash_node_delayed(call);
 926   call->del_req(call->req()-1);
 927 }
 928 
 929 void ShenandoahBarrierSetC2::enqueue_useful_gc_barrier(PhaseIterGVN* igvn, Node* node) const {
 930   if (node->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(node)) {
 931     igvn->add_users_to_worklist(node);
 932   }
 933 }
 934 
 935 void ShenandoahBarrierSetC2::eliminate_useless_gc_barriers(Unique_Node_List &useful, Compile* C) const {
 936   for (uint i = 0; i < useful.size(); i++) {
 937     Node* n = useful.at(i);
 938     if (n->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(n)) {
 939       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 940         C->record_for_igvn(n->fast_out(i));
 941       }
 942     }
 943   }
 944   for (int i = state()->enqueue_barriers_count() - 1; i >= 0; i--) {
 945     ShenandoahEnqueueBarrierNode* n = state()->enqueue_barrier(i);
 946     if (!useful.member(n)) {
 947       state()->remove_enqueue_barrier(n);
 948     }
 949   }
 950   for (int i = state()->load_reference_barriers_count() - 1; i >= 0; i--) {
 951     ShenandoahLoadReferenceBarrierNode* n = state()->load_reference_barrier(i);
 952     if (!useful.member(n)) {
 953       state()->remove_load_reference_barrier(n);
 954     }
 955   }
 956 }
 957 
 958 void* ShenandoahBarrierSetC2::create_barrier_state(Arena* comp_arena) const {
 959   return new(comp_arena) ShenandoahBarrierSetC2State(comp_arena);
 960 }
 961 
 962 ShenandoahBarrierSetC2State* ShenandoahBarrierSetC2::state() const {
 963   return reinterpret_cast<ShenandoahBarrierSetC2State*>(Compile::current()->barrier_set_state());
 964 }
 965 
 966 // If the BarrierSetC2 state has kept macro nodes in its compilation unit state to be
 967 // expanded later, then now is the time to do so.
 968 bool ShenandoahBarrierSetC2::expand_macro_nodes(PhaseMacroExpand* macro) const { return false; }
 969 
 970 #ifdef ASSERT
 971 void ShenandoahBarrierSetC2::verify_gc_barriers(Compile* compile, CompilePhase phase) const {
 972   if (ShenandoahVerifyOptoBarriers && phase == BarrierSetC2::BeforeMacroExpand) {
 973     ShenandoahBarrierC2Support::verify(Compile::current()->root());
 974   } else if (phase == BarrierSetC2::BeforeCodeGen) {
 975     // Verify G1 pre-barriers
 976     const int marking_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_active_offset());
 977 
 978     ResourceArea *area = Thread::current()->resource_area();
 979     Unique_Node_List visited(area);
 980     Node_List worklist(area);
 981     // We're going to walk control flow backwards starting from the Root
 982     worklist.push(compile->root());
 983     while (worklist.size() > 0) {
 984       Node *x = worklist.pop();
 985       if (x == NULL || x == compile->top()) continue;
 986       if (visited.member(x)) {
 987         continue;
 988       } else {
 989         visited.push(x);
 990       }
 991 
 992       if (x->is_Region()) {
 993         for (uint i = 1; i < x->req(); i++) {
 994           worklist.push(x->in(i));
 995         }
 996       } else {
 997         worklist.push(x->in(0));
 998         // We are looking for the pattern:
 999         //                            /->ThreadLocal
1000         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
1001         //              \->ConI(0)
1002         // We want to verify that the If and the LoadB have the same control
1003         // See GraphKit::g1_write_barrier_pre()
1004         if (x->is_If()) {
1005           IfNode *iff = x->as_If();
1006           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
1007             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
1008             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
1009                 && cmp->in(1)->is_Load()) {
1010               LoadNode *load = cmp->in(1)->as_Load();
1011               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
1012                   && load->in(2)->in(3)->is_Con()
1013                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
1014 
1015                 Node *if_ctrl = iff->in(0);
1016                 Node *load_ctrl = load->in(0);
1017 
1018                 if (if_ctrl != load_ctrl) {
1019                   // Skip possible CProj->NeverBranch in infinite loops
1020                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
1021                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
1022                     if_ctrl = if_ctrl->in(0)->in(0);
1023                   }
1024                 }
1025                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
1026               }
1027             }
1028           }
1029         }
1030       }
1031     }
1032   }
1033 }
1034 #endif
1035 
1036 Node* ShenandoahBarrierSetC2::ideal_node(PhaseGVN* phase, Node* n, bool can_reshape) const {
1037   if (is_shenandoah_wb_pre_call(n)) {
1038     uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type()->domain()->cnt();
1039     if (n->req() > cnt) {
1040       Node* addp = n->in(cnt);
1041       if (has_only_shenandoah_wb_pre_uses(addp)) {
1042         n->del_req(cnt);
1043         if (can_reshape) {
1044           phase->is_IterGVN()->_worklist.push(addp);
1045         }
1046         return n;
1047       }
1048     }
1049   }
1050   if (n->Opcode() == Op_CmpP) {
1051     Node* in1 = n->in(1);
1052     Node* in2 = n->in(2);
1053     if (in1->bottom_type() == TypePtr::NULL_PTR) {
1054       in2 = step_over_gc_barrier(in2);
1055     }
1056     if (in2->bottom_type() == TypePtr::NULL_PTR) {
1057       in1 = step_over_gc_barrier(in1);
1058     }
1059     PhaseIterGVN* igvn = phase->is_IterGVN();
1060     if (in1 != n->in(1)) {
1061       if (igvn != NULL) {
1062         n->set_req_X(1, in1, igvn);
1063       } else {
1064         n->set_req(1, in1);
1065       }
1066       assert(in2 == n->in(2), "only one change");
1067       return n;
1068     }
1069     if (in2 != n->in(2)) {
1070       if (igvn != NULL) {
1071         n->set_req_X(2, in2, igvn);
1072       } else {
1073         n->set_req(2, in2);
1074       }
1075       return n;
1076     }
1077   } else if (can_reshape &&
1078              n->Opcode() == Op_If &&
1079              ShenandoahBarrierC2Support::is_heap_stable_test(n) &&
1080              n->in(0) != NULL) {
1081     Node* dom = n->in(0);
1082     Node* prev_dom = n;
1083     int op = n->Opcode();
1084     int dist = 16;
1085     // Search up the dominator tree for another heap stable test
1086     while (dom->Opcode() != op    ||  // Not same opcode?
1087            !ShenandoahBarrierC2Support::is_heap_stable_test(dom) ||  // Not same input 1?
1088            prev_dom->in(0) != dom) {  // One path of test does not dominate?
1089       if (dist < 0) return NULL;
1090 
1091       dist--;
1092       prev_dom = dom;
1093       dom = IfNode::up_one_dom(dom);
1094       if (!dom) return NULL;
1095     }
1096 
1097     // Check that we did not follow a loop back to ourselves
1098     if (n == dom) {
1099       return NULL;
1100     }
1101 
1102     return n->as_If()->dominated_by(prev_dom, phase->is_IterGVN());
1103   }
1104 
1105   return NULL;
1106 }
1107 
1108 bool ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(Node* n) {
1109   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1110     Node* u = n->fast_out(i);
1111     if (!is_shenandoah_wb_pre_call(u)) {
1112       return false;
1113     }
1114   }
1115   return n->outcnt() > 0;
1116 }
1117 
1118 bool ShenandoahBarrierSetC2::final_graph_reshaping(Compile* compile, Node* n, uint opcode) const {
1119   switch (opcode) {
1120     case Op_CallLeaf:
1121     case Op_CallLeafNoFP: {
1122       assert (n->is_Call(), "");
1123       CallNode *call = n->as_Call();
1124       if (ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(call)) {
1125         uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type()->domain()->cnt();
1126         if (call->req() > cnt) {
1127           assert(call->req() == cnt + 1, "only one extra input");
1128           Node *addp = call->in(cnt);
1129           assert(!ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(addp), "useless address computation?");
1130           call->del_req(cnt);
1131         }
1132       }
1133       return false;
1134     }
1135     case Op_ShenandoahCompareAndSwapP:
1136     case Op_ShenandoahCompareAndSwapN:
1137     case Op_ShenandoahWeakCompareAndSwapN:
1138     case Op_ShenandoahWeakCompareAndSwapP:
1139     case Op_ShenandoahCompareAndExchangeP:
1140     case Op_ShenandoahCompareAndExchangeN:
1141 #ifdef ASSERT
1142       if( VerifyOptoOopOffsets ) {
1143         MemNode* mem  = n->as_Mem();
1144         // Check to see if address types have grounded out somehow.
1145         const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
1146         ciInstanceKlass *k = tp->klass()->as_instance_klass();
1147         bool oop_offset_is_sane = k->contains_field_offset(tp->offset());
1148         assert( !tp || oop_offset_is_sane, "" );
1149       }
1150 #endif
1151       return true;
1152     case Op_ShenandoahLoadReferenceBarrier:
1153       assert(false, "should have been expanded already");
1154       return true;
1155     default:
1156       return false;
1157   }
1158 }
1159 
1160 bool ShenandoahBarrierSetC2::escape_add_to_con_graph(ConnectionGraph* conn_graph, PhaseGVN* gvn, Unique_Node_List* delayed_worklist, Node* n, uint opcode) const {
1161   switch (opcode) {
1162     case Op_ShenandoahCompareAndExchangeP:
1163     case Op_ShenandoahCompareAndExchangeN:
1164       conn_graph->add_objload_to_connection_graph(n, delayed_worklist);
1165       // fallthrough
1166     case Op_ShenandoahWeakCompareAndSwapP:
1167     case Op_ShenandoahWeakCompareAndSwapN:
1168     case Op_ShenandoahCompareAndSwapP:
1169     case Op_ShenandoahCompareAndSwapN:
1170       conn_graph->add_to_congraph_unsafe_access(n, opcode, delayed_worklist);
1171       return true;
1172     case Op_StoreP: {
1173       Node* adr = n->in(MemNode::Address);
1174       const Type* adr_type = gvn->type(adr);
1175       // Pointer stores in G1 barriers looks like unsafe access.
1176       // Ignore such stores to be able scalar replace non-escaping
1177       // allocations.
1178       if (adr_type->isa_rawptr() && adr->is_AddP()) {
1179         Node* base = conn_graph->get_addp_base(adr);
1180         if (base->Opcode() == Op_LoadP &&
1181           base->in(MemNode::Address)->is_AddP()) {
1182           adr = base->in(MemNode::Address);
1183           Node* tls = conn_graph->get_addp_base(adr);
1184           if (tls->Opcode() == Op_ThreadLocal) {
1185              int offs = (int) gvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
1186              const int buf_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset());
1187              if (offs == buf_offset) {
1188                return true; // Pre barrier previous oop value store.
1189              }
1190           }
1191         }
1192       }
1193       return false;
1194     }
1195     case Op_ShenandoahEnqueueBarrier:
1196       conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), delayed_worklist);
1197       break;
1198     case Op_ShenandoahLoadReferenceBarrier:
1199       conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), delayed_worklist);
1200       return true;
1201     default:
1202       // Nothing
1203       break;
1204   }
1205   return false;
1206 }
1207 
1208 bool ShenandoahBarrierSetC2::escape_add_final_edges(ConnectionGraph* conn_graph, PhaseGVN* gvn, Node* n, uint opcode) const {
1209   switch (opcode) {
1210     case Op_ShenandoahCompareAndExchangeP:
1211     case Op_ShenandoahCompareAndExchangeN: {
1212       Node *adr = n->in(MemNode::Address);
1213       conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
1214       // fallthrough
1215     }
1216     case Op_ShenandoahCompareAndSwapP:
1217     case Op_ShenandoahCompareAndSwapN:
1218     case Op_ShenandoahWeakCompareAndSwapP:
1219     case Op_ShenandoahWeakCompareAndSwapN:
1220       return conn_graph->add_final_edges_unsafe_access(n, opcode);
1221     case Op_ShenandoahEnqueueBarrier:
1222       conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), NULL);
1223       return true;
1224     case Op_ShenandoahLoadReferenceBarrier:
1225       conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), NULL);
1226       return true;
1227     default:
1228       // Nothing
1229       break;
1230   }
1231   return false;
1232 }
1233 
1234 bool ShenandoahBarrierSetC2::escape_has_out_with_unsafe_object(Node* n) const {
1235   return n->has_out_with(Op_ShenandoahCompareAndExchangeP) || n->has_out_with(Op_ShenandoahCompareAndExchangeN) ||
1236          n->has_out_with(Op_ShenandoahCompareAndSwapP, Op_ShenandoahCompareAndSwapN, Op_ShenandoahWeakCompareAndSwapP, Op_ShenandoahWeakCompareAndSwapN);
1237 
1238 }
1239 
1240 bool ShenandoahBarrierSetC2::matcher_find_shared_post_visit(Matcher* matcher, Node* n, uint opcode) const {
1241   switch (opcode) {
1242     case Op_ShenandoahCompareAndExchangeP:
1243     case Op_ShenandoahCompareAndExchangeN:
1244     case Op_ShenandoahWeakCompareAndSwapP:
1245     case Op_ShenandoahWeakCompareAndSwapN:
1246     case Op_ShenandoahCompareAndSwapP:
1247     case Op_ShenandoahCompareAndSwapN: {   // Convert trinary to binary-tree
1248       Node* newval = n->in(MemNode::ValueIn);
1249       Node* oldval = n->in(LoadStoreConditionalNode::ExpectedIn);
1250       Node* pair = new BinaryNode(oldval, newval);
1251       n->set_req(MemNode::ValueIn,pair);
1252       n->del_req(LoadStoreConditionalNode::ExpectedIn);
1253       return true;
1254     }
1255     default:
1256       break;
1257   }
1258   return false;
1259 }
1260 
1261 bool ShenandoahBarrierSetC2::matcher_is_store_load_barrier(Node* x, uint xop) const {
1262   return xop == Op_ShenandoahCompareAndExchangeP ||
1263          xop == Op_ShenandoahCompareAndExchangeN ||
1264          xop == Op_ShenandoahWeakCompareAndSwapP ||
1265          xop == Op_ShenandoahWeakCompareAndSwapN ||
1266          xop == Op_ShenandoahCompareAndSwapN ||
1267          xop == Op_ShenandoahCompareAndSwapP;
1268 }