1 /*
   2  * Copyright (c) 2018, 2019, Red Hat, Inc. All rights reserved.
   3  *
   4  * This code is free software; you can redistribute it and/or modify it
   5  * under the terms of the GNU General Public License version 2 only, as
   6  * published by the Free Software Foundation.
   7  *
   8  * This code is distributed in the hope that it will be useful, but WITHOUT
   9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  11  * version 2 for more details (a copy is included in the LICENSE file that
  12  * accompanied this code).
  13  *
  14  * You should have received a copy of the GNU General Public License version
  15  * 2 along with this work; if not, write to the Free Software Foundation,
  16  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  17  *
  18  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  19  * or visit www.oracle.com if you need additional information or have any
  20  * questions.
  21  *
  22  */
  23 
  24 #include "precompiled.hpp"
  25 #include "gc/shared/barrierSet.hpp"
  26 #include "gc/shenandoah/shenandoahConcurrentRoots.hpp"
  27 #include "gc/shenandoah/shenandoahForwarding.hpp"
  28 #include "gc/shenandoah/shenandoahHeap.hpp"
  29 #include "gc/shenandoah/shenandoahHeuristics.hpp"
  30 #include "gc/shenandoah/shenandoahRuntime.hpp"
  31 #include "gc/shenandoah/shenandoahThreadLocalData.hpp"
  32 #include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp"
  33 #include "gc/shenandoah/c2/shenandoahSupport.hpp"
  34 #include "opto/arraycopynode.hpp"
  35 #include "opto/escape.hpp"
  36 #include "opto/graphKit.hpp"
  37 #include "opto/idealKit.hpp"
  38 #include "opto/macro.hpp"
  39 #include "opto/movenode.hpp"
  40 #include "opto/narrowptrnode.hpp"
  41 #include "opto/rootnode.hpp"
  42 #include "opto/runtime.hpp"
  43 
  44 ShenandoahBarrierSetC2* ShenandoahBarrierSetC2::bsc2() {
  45   return reinterpret_cast<ShenandoahBarrierSetC2*>(BarrierSet::barrier_set()->barrier_set_c2());
  46 }
  47 
  48 ShenandoahBarrierSetC2State::ShenandoahBarrierSetC2State(Arena* comp_arena)
  49   : _enqueue_barriers(new (comp_arena) GrowableArray<ShenandoahEnqueueBarrierNode*>(comp_arena, 8,  0, NULL)),
  50     _load_reference_barriers(new (comp_arena) GrowableArray<ShenandoahLoadReferenceBarrierNode*>(comp_arena, 8,  0, NULL)) {
  51 }
  52 
  53 int ShenandoahBarrierSetC2State::enqueue_barriers_count() const {
  54   return _enqueue_barriers->length();
  55 }
  56 
  57 ShenandoahEnqueueBarrierNode* ShenandoahBarrierSetC2State::enqueue_barrier(int idx) const {
  58   return _enqueue_barriers->at(idx);
  59 }
  60 
  61 void ShenandoahBarrierSetC2State::add_enqueue_barrier(ShenandoahEnqueueBarrierNode * n) {
  62   assert(!_enqueue_barriers->contains(n), "duplicate entry in barrier list");
  63   _enqueue_barriers->append(n);
  64 }
  65 
  66 void ShenandoahBarrierSetC2State::remove_enqueue_barrier(ShenandoahEnqueueBarrierNode * n) {
  67   if (_enqueue_barriers->contains(n)) {
  68     _enqueue_barriers->remove(n);
  69   }
  70 }
  71 
  72 int ShenandoahBarrierSetC2State::load_reference_barriers_count() const {
  73   return _load_reference_barriers->length();
  74 }
  75 
  76 ShenandoahLoadReferenceBarrierNode* ShenandoahBarrierSetC2State::load_reference_barrier(int idx) const {
  77   return _load_reference_barriers->at(idx);
  78 }
  79 
  80 void ShenandoahBarrierSetC2State::add_load_reference_barrier(ShenandoahLoadReferenceBarrierNode * n) {
  81   assert(!_load_reference_barriers->contains(n), "duplicate entry in barrier list");
  82   _load_reference_barriers->append(n);
  83 }
  84 
  85 void ShenandoahBarrierSetC2State::remove_load_reference_barrier(ShenandoahLoadReferenceBarrierNode * n) {
  86   if (_load_reference_barriers->contains(n)) {
  87     _load_reference_barriers->remove(n);
  88   }
  89 }
  90 
  91 Node* ShenandoahBarrierSetC2::shenandoah_storeval_barrier(GraphKit* kit, Node* obj) const {
  92   if (ShenandoahStoreValEnqueueBarrier) {
  93     obj = shenandoah_enqueue_barrier(kit, obj);
  94   }
  95   return obj;
  96 }
  97 
  98 #define __ kit->
  99 
 100 bool ShenandoahBarrierSetC2::satb_can_remove_pre_barrier(GraphKit* kit, PhaseTransform* phase, Node* adr,
 101                                                          BasicType bt, uint adr_idx) const {
 102   intptr_t offset = 0;
 103   Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 104   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
 105 
 106   if (offset == Type::OffsetBot) {
 107     return false; // cannot unalias unless there are precise offsets
 108   }
 109 
 110   if (alloc == NULL) {
 111     return false; // No allocation found
 112   }
 113 
 114   intptr_t size_in_bytes = type2aelembytes(bt);
 115 
 116   Node* mem = __ memory(adr_idx); // start searching here...
 117 
 118   for (int cnt = 0; cnt < 50; cnt++) {
 119 
 120     if (mem->is_Store()) {
 121 
 122       Node* st_adr = mem->in(MemNode::Address);
 123       intptr_t st_offset = 0;
 124       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 125 
 126       if (st_base == NULL) {
 127         break; // inscrutable pointer
 128       }
 129 
 130       // Break we have found a store with same base and offset as ours so break
 131       if (st_base == base && st_offset == offset) {
 132         break;
 133       }
 134 
 135       if (st_offset != offset && st_offset != Type::OffsetBot) {
 136         const int MAX_STORE = BytesPerLong;
 137         if (st_offset >= offset + size_in_bytes ||
 138             st_offset <= offset - MAX_STORE ||
 139             st_offset <= offset - mem->as_Store()->memory_size()) {
 140           // Success:  The offsets are provably independent.
 141           // (You may ask, why not just test st_offset != offset and be done?
 142           // The answer is that stores of different sizes can co-exist
 143           // in the same sequence of RawMem effects.  We sometimes initialize
 144           // a whole 'tile' of array elements with a single jint or jlong.)
 145           mem = mem->in(MemNode::Memory);
 146           continue; // advance through independent store memory
 147         }
 148       }
 149 
 150       if (st_base != base
 151           && MemNode::detect_ptr_independence(base, alloc, st_base,
 152                                               AllocateNode::Ideal_allocation(st_base, phase),
 153                                               phase)) {
 154         // Success:  The bases are provably independent.
 155         mem = mem->in(MemNode::Memory);
 156         continue; // advance through independent store memory
 157       }
 158     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 159 
 160       InitializeNode* st_init = mem->in(0)->as_Initialize();
 161       AllocateNode* st_alloc = st_init->allocation();
 162 
 163       // Make sure that we are looking at the same allocation site.
 164       // The alloc variable is guaranteed to not be null here from earlier check.
 165       if (alloc == st_alloc) {
 166         // Check that the initialization is storing NULL so that no previous store
 167         // has been moved up and directly write a reference
 168         Node* captured_store = st_init->find_captured_store(offset,
 169                                                             type2aelembytes(T_OBJECT),
 170                                                             phase);
 171         if (captured_store == NULL || captured_store == st_init->zero_memory()) {
 172           return true;
 173         }
 174       }
 175     }
 176 
 177     // Unless there is an explicit 'continue', we must bail out here,
 178     // because 'mem' is an inscrutable memory state (e.g., a call).
 179     break;
 180   }
 181 
 182   return false;
 183 }
 184 
 185 #undef __
 186 #define __ ideal.
 187 
 188 void ShenandoahBarrierSetC2::satb_write_barrier_pre(GraphKit* kit,
 189                                                     bool do_load,
 190                                                     Node* obj,
 191                                                     Node* adr,
 192                                                     uint alias_idx,
 193                                                     Node* val,
 194                                                     const TypeOopPtr* val_type,
 195                                                     Node* pre_val,
 196                                                     BasicType bt) const {
 197   // Some sanity checks
 198   // Note: val is unused in this routine.
 199 
 200   if (do_load) {
 201     // We need to generate the load of the previous value
 202     assert(obj != NULL, "must have a base");
 203     assert(adr != NULL, "where are loading from?");
 204     assert(pre_val == NULL, "loaded already?");
 205     assert(val_type != NULL, "need a type");
 206 
 207     if (ReduceInitialCardMarks
 208         && satb_can_remove_pre_barrier(kit, &kit->gvn(), adr, bt, alias_idx)) {
 209       return;
 210     }
 211 
 212   } else {
 213     // In this case both val_type and alias_idx are unused.
 214     assert(pre_val != NULL, "must be loaded already");
 215     // Nothing to be done if pre_val is null.
 216     if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
 217     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
 218   }
 219   assert(bt == T_OBJECT, "or we shouldn't be here");
 220 
 221   IdealKit ideal(kit, true);
 222 
 223   Node* tls = __ thread(); // ThreadLocalStorage
 224 
 225   Node* no_base = __ top();
 226   Node* zero  = __ ConI(0);
 227   Node* zeroX = __ ConX(0);
 228 
 229   float likely  = PROB_LIKELY(0.999);
 230   float unlikely  = PROB_UNLIKELY(0.999);
 231 
 232   // Offsets into the thread
 233   const int index_offset   = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_index_offset());
 234   const int buffer_offset  = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset());
 235 
 236   // Now the actual pointers into the thread
 237   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
 238   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
 239 
 240   // Now some of the values
 241   Node* marking;
 242   Node* gc_state = __ AddP(no_base, tls, __ ConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset())));
 243   Node* ld = __ load(__ ctrl(), gc_state, TypeInt::BYTE, T_BYTE, Compile::AliasIdxRaw);
 244   marking = __ AndI(ld, __ ConI(ShenandoahHeap::MARKING));
 245   assert(ShenandoahBarrierC2Support::is_gc_state_load(ld), "Should match the shape");
 246 
 247   // if (!marking)
 248   __ if_then(marking, BoolTest::ne, zero, unlikely); {
 249     BasicType index_bt = TypeX_X->basic_type();
 250     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 SATBMarkQueue::_index with wrong size.");
 251     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
 252 
 253     if (do_load) {
 254       // load original value
 255       // alias_idx correct??
 256       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
 257     }
 258 
 259     // if (pre_val != NULL)
 260     __ if_then(pre_val, BoolTest::ne, kit->null()); {
 261       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
 262 
 263       // is the queue for this thread full?
 264       __ if_then(index, BoolTest::ne, zeroX, likely); {
 265 
 266         // decrement the index
 267         Node* next_index = kit->gvn().transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
 268 
 269         // Now get the buffer location we will log the previous value into and store it
 270         Node *log_addr = __ AddP(no_base, buffer, next_index);
 271         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
 272         // update the index
 273         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
 274 
 275       } __ else_(); {
 276 
 277         // logging buffer is full, call the runtime
 278         const TypeFunc *tf = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type();
 279         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry), "shenandoah_wb_pre", pre_val, tls);
 280       } __ end_if();  // (!index)
 281     } __ end_if();  // (pre_val != NULL)
 282   } __ end_if();  // (!marking)
 283 
 284   // Final sync IdealKit and GraphKit.
 285   kit->final_sync(ideal);
 286 
 287   if (ShenandoahSATBBarrier && adr != NULL) {
 288     Node* c = kit->control();
 289     Node* call = c->in(1)->in(1)->in(1)->in(0);
 290     assert(is_shenandoah_wb_pre_call(call), "shenandoah_wb_pre call expected");
 291     call->add_req(adr);
 292   }
 293 }
 294 
 295 bool ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(Node* call) {
 296   return call->is_CallLeaf() &&
 297          call->as_CallLeaf()->entry_point() == CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry);
 298 }
 299 
 300 bool ShenandoahBarrierSetC2::is_shenandoah_lrb_call(Node* call) {
 301   if (!call->is_CallLeaf()) {
 302     return false;
 303   }
 304 
 305   address entry_point = call->as_CallLeaf()->entry_point();
 306   return (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier)) ||
 307          (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_narrow)) ||
 308          (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_native));
 309 }
 310 
 311 bool ShenandoahBarrierSetC2::is_shenandoah_marking_if(PhaseTransform *phase, Node* n) {
 312   if (n->Opcode() != Op_If) {
 313     return false;
 314   }
 315 
 316   Node* bol = n->in(1);
 317   assert(bol->is_Bool(), "");
 318   Node* cmpx = bol->in(1);
 319   if (bol->as_Bool()->_test._test == BoolTest::ne &&
 320       cmpx->is_Cmp() && cmpx->in(2) == phase->intcon(0) &&
 321       is_shenandoah_state_load(cmpx->in(1)->in(1)) &&
 322       cmpx->in(1)->in(2)->is_Con() &&
 323       cmpx->in(1)->in(2) == phase->intcon(ShenandoahHeap::MARKING)) {
 324     return true;
 325   }
 326 
 327   return false;
 328 }
 329 
 330 bool ShenandoahBarrierSetC2::is_shenandoah_state_load(Node* n) {
 331   if (!n->is_Load()) return false;
 332   const int state_offset = in_bytes(ShenandoahThreadLocalData::gc_state_offset());
 333   return n->in(2)->is_AddP() && n->in(2)->in(2)->Opcode() == Op_ThreadLocal
 334          && n->in(2)->in(3)->is_Con()
 335          && n->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == state_offset;
 336 }
 337 
 338 void ShenandoahBarrierSetC2::shenandoah_write_barrier_pre(GraphKit* kit,
 339                                                           bool do_load,
 340                                                           Node* obj,
 341                                                           Node* adr,
 342                                                           uint alias_idx,
 343                                                           Node* val,
 344                                                           const TypeOopPtr* val_type,
 345                                                           Node* pre_val,
 346                                                           BasicType bt) const {
 347   if (ShenandoahSATBBarrier) {
 348     IdealKit ideal(kit);
 349     kit->sync_kit(ideal);
 350 
 351     satb_write_barrier_pre(kit, do_load, obj, adr, alias_idx, val, val_type, pre_val, bt);
 352 
 353     ideal.sync_kit(kit);
 354     kit->final_sync(ideal);
 355   }
 356 }
 357 
 358 Node* ShenandoahBarrierSetC2::shenandoah_enqueue_barrier(GraphKit* kit, Node* pre_val) const {
 359   return kit->gvn().transform(new ShenandoahEnqueueBarrierNode(pre_val));
 360 }
 361 
 362 // Helper that guards and inserts a pre-barrier.
 363 void ShenandoahBarrierSetC2::insert_pre_barrier(GraphKit* kit, Node* base_oop, Node* offset,
 364                                                 Node* pre_val, bool need_mem_bar) const {
 365   // We could be accessing the referent field of a reference object. If so, when G1
 366   // is enabled, we need to log the value in the referent field in an SATB buffer.
 367   // This routine performs some compile time filters and generates suitable
 368   // runtime filters that guard the pre-barrier code.
 369   // Also add memory barrier for non volatile load from the referent field
 370   // to prevent commoning of loads across safepoint.
 371 
 372   // Some compile time checks.
 373 
 374   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
 375   const TypeX* otype = offset->find_intptr_t_type();
 376   if (otype != NULL && otype->is_con() &&
 377       otype->get_con() != java_lang_ref_Reference::referent_offset) {
 378     // Constant offset but not the reference_offset so just return
 379     return;
 380   }
 381 
 382   // We only need to generate the runtime guards for instances.
 383   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
 384   if (btype != NULL) {
 385     if (btype->isa_aryptr()) {
 386       // Array type so nothing to do
 387       return;
 388     }
 389 
 390     const TypeInstPtr* itype = btype->isa_instptr();
 391     if (itype != NULL) {
 392       // Can the klass of base_oop be statically determined to be
 393       // _not_ a sub-class of Reference and _not_ Object?
 394       ciKlass* klass = itype->klass();
 395       if ( klass->is_loaded() &&
 396           !klass->is_subtype_of(kit->env()->Reference_klass()) &&
 397           !kit->env()->Object_klass()->is_subtype_of(klass)) {
 398         return;
 399       }
 400     }
 401   }
 402 
 403   // The compile time filters did not reject base_oop/offset so
 404   // we need to generate the following runtime filters
 405   //
 406   // if (offset == java_lang_ref_Reference::_reference_offset) {
 407   //   if (instance_of(base, java.lang.ref.Reference)) {
 408   //     pre_barrier(_, pre_val, ...);
 409   //   }
 410   // }
 411 
 412   float likely   = PROB_LIKELY(  0.999);
 413   float unlikely = PROB_UNLIKELY(0.999);
 414 
 415   IdealKit ideal(kit);
 416 
 417   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
 418 
 419   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
 420       // Update graphKit memory and control from IdealKit.
 421       kit->sync_kit(ideal);
 422 
 423       Node* ref_klass_con = kit->makecon(TypeKlassPtr::make(kit->env()->Reference_klass()));
 424       Node* is_instof = kit->gen_instanceof(base_oop, ref_klass_con);
 425 
 426       // Update IdealKit memory and control from graphKit.
 427       __ sync_kit(kit);
 428 
 429       Node* one = __ ConI(1);
 430       // is_instof == 0 if base_oop == NULL
 431       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
 432 
 433         // Update graphKit from IdeakKit.
 434         kit->sync_kit(ideal);
 435 
 436         // Use the pre-barrier to record the value in the referent field
 437         satb_write_barrier_pre(kit, false /* do_load */,
 438                                NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
 439                                pre_val /* pre_val */,
 440                                T_OBJECT);
 441         if (need_mem_bar) {
 442           // Add memory barrier to prevent commoning reads from this field
 443           // across safepoint since GC can change its value.
 444           kit->insert_mem_bar(Op_MemBarCPUOrder);
 445         }
 446         // Update IdealKit from graphKit.
 447         __ sync_kit(kit);
 448 
 449       } __ end_if(); // _ref_type != ref_none
 450   } __ end_if(); // offset == referent_offset
 451 
 452   // Final sync IdealKit and GraphKit.
 453   kit->final_sync(ideal);
 454 }
 455 
 456 #undef __
 457 
 458 const TypeFunc* ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type() {
 459   const Type **fields = TypeTuple::fields(2);
 460   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 461   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 462   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 463 
 464   // create result type (range)
 465   fields = TypeTuple::fields(0);
 466   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 467 
 468   return TypeFunc::make(domain, range);
 469 }
 470 
 471 const TypeFunc* ShenandoahBarrierSetC2::shenandoah_clone_barrier_Type() {
 472   const Type **fields = TypeTuple::fields(1);
 473   fields[TypeFunc::Parms+0] = TypeOopPtr::NOTNULL; // src oop
 474   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 475 
 476   // create result type (range)
 477   fields = TypeTuple::fields(0);
 478   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 479 
 480   return TypeFunc::make(domain, range);
 481 }
 482 
 483 const TypeFunc* ShenandoahBarrierSetC2::shenandoah_load_reference_barrier_Type() {
 484   const Type **fields = TypeTuple::fields(2);
 485   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 486   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // original load address
 487 
 488   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 489 
 490   // create result type (range)
 491   fields = TypeTuple::fields(1);
 492   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;
 493   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 494 
 495   return TypeFunc::make(domain, range);
 496 }
 497 
 498 Node* ShenandoahBarrierSetC2::store_at_resolved(C2Access& access, C2AccessValue& val) const {
 499   DecoratorSet decorators = access.decorators();
 500 
 501   const TypePtr* adr_type = access.addr().type();
 502   Node* adr = access.addr().node();
 503 
 504   bool anonymous = (decorators & ON_UNKNOWN_OOP_REF) != 0;
 505   bool on_heap = (decorators & IN_HEAP) != 0;
 506 
 507   if (!access.is_oop() || (!on_heap && !anonymous)) {
 508     return BarrierSetC2::store_at_resolved(access, val);
 509   }
 510 
 511   if (access.is_parse_access()) {
 512     C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access);
 513     GraphKit* kit = parse_access.kit();
 514 
 515     uint adr_idx = kit->C->get_alias_index(adr_type);
 516     assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
 517     Node* value = val.node();
 518     value = shenandoah_storeval_barrier(kit, value);
 519     val.set_node(value);
 520     shenandoah_write_barrier_pre(kit, true /* do_load */, /*kit->control(),*/ access.base(), adr, adr_idx, val.node(),
 521                                  static_cast<const TypeOopPtr*>(val.type()), NULL /* pre_val */, access.type());
 522   } else {
 523     assert(access.is_opt_access(), "only for optimization passes");
 524     assert(((decorators & C2_TIGHTLY_COUPLED_ALLOC) != 0 || !ShenandoahSATBBarrier) && (decorators & C2_ARRAY_COPY) != 0, "unexpected caller of this code");
 525     C2OptAccess& opt_access = static_cast<C2OptAccess&>(access);
 526     PhaseGVN& gvn =  opt_access.gvn();
 527     MergeMemNode* mm = opt_access.mem();
 528 
 529     if (ShenandoahStoreValEnqueueBarrier) {
 530       Node* enqueue = gvn.transform(new ShenandoahEnqueueBarrierNode(val.node()));
 531       val.set_node(enqueue);
 532     }
 533   }
 534   return BarrierSetC2::store_at_resolved(access, val);
 535 }
 536 
 537 Node* ShenandoahBarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const {
 538   // 1: load reference
 539   Node* load = BarrierSetC2::load_at_resolved(access, val_type);
 540   // For none-reference load, no additional barrier is needed
 541   if (!access.is_oop()) {
 542     return load;
 543   }
 544 
 545   DecoratorSet decorators = access.decorators();
 546   bool in_native = (decorators & IN_NATIVE) != 0;
 547 
 548   // 2: apply LRB if ShenandoahLoadRefBarrier is set
 549   if (ShenandoahLoadRefBarrier) {
 550     // Native barrier is for concurrent root processing
 551     bool use_native_barrier = in_native && ShenandoahConcurrentRoots::can_do_concurrent_roots();
 552     load = new ShenandoahLoadReferenceBarrierNode(NULL, load, use_native_barrier);
 553     if (access.is_parse_access()) {
 554       load = static_cast<C2ParseAccess &>(access).kit()->gvn().transform(load);
 555     } else {
 556       load = static_cast<C2OptAccess &>(access).gvn().transform(load);
 557     }
 558   }
 559 
 560   // 3: apply keep-alive barrier if ShenandoahKeepAliveBarrier is set
 561   if (ShenandoahKeepAliveBarrier) {
 562     Node* top = Compile::current()->top();
 563     Node* adr = access.addr().node();
 564     Node* offset = adr->is_AddP() ? adr->in(AddPNode::Offset) : top;
 565     Node* obj = access.base();
 566 
 567     bool unknown = (decorators & ON_UNKNOWN_OOP_REF) != 0;
 568     bool on_weak_ref = (decorators & (ON_WEAK_OOP_REF | ON_PHANTOM_OOP_REF)) != 0;
 569     bool is_traversal_mode = ShenandoahHeap::heap()->is_traversal_mode();
 570     bool keep_alive = (decorators & AS_NO_KEEPALIVE) == 0 || is_traversal_mode;
 571 
 572     // If we are reading the value of the referent field of a Reference
 573     // object (either by using Unsafe directly or through reflection)
 574     // then, if SATB is enabled, we need to record the referent in an
 575     // SATB log buffer using the pre-barrier mechanism.
 576     // Also we need to add memory barrier to prevent commoning reads
 577     // from this field across safepoint since GC can change its value.
 578     if (!on_weak_ref || (unknown && (offset == top || obj == top)) || !keep_alive) {
 579       return load;
 580     }
 581 
 582     assert(access.is_parse_access(), "entry not supported at optimization time");
 583     C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access);
 584     GraphKit* kit = parse_access.kit();
 585     bool mismatched = (decorators & C2_MISMATCHED) != 0;
 586     bool is_unordered = (decorators & MO_UNORDERED) != 0;
 587     bool need_cpu_mem_bar = !is_unordered || mismatched || in_native;
 588 
 589     if (on_weak_ref) {
 590       // Use the pre-barrier to record the value in the referent field
 591       satb_write_barrier_pre(kit, false /* do_load */,
 592                              NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
 593                              load /* pre_val */, T_OBJECT);
 594       // Add memory barrier to prevent commoning reads from this field
 595       // across safepoint since GC can change its value.
 596       kit->insert_mem_bar(Op_MemBarCPUOrder);
 597     } else if (unknown) {
 598       // We do not require a mem bar inside pre_barrier if need_mem_bar
 599       // is set: the barriers would be emitted by us.
 600       insert_pre_barrier(kit, obj, offset, load, !need_cpu_mem_bar);
 601     }
 602   }
 603 
 604   return load;
 605 }
 606 
 607 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
 608                                                    Node* new_val, const Type* value_type) const {
 609   GraphKit* kit = access.kit();
 610   if (access.is_oop()) {
 611     new_val = shenandoah_storeval_barrier(kit, new_val);
 612     shenandoah_write_barrier_pre(kit, false /* do_load */,
 613                                  NULL, NULL, max_juint, NULL, NULL,
 614                                  expected_val /* pre_val */, T_OBJECT);
 615 
 616     MemNode::MemOrd mo = access.mem_node_mo();
 617     Node* mem = access.memory();
 618     Node* adr = access.addr().node();
 619     const TypePtr* adr_type = access.addr().type();
 620     Node* load_store = NULL;
 621 
 622 #ifdef _LP64
 623     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 624       Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
 625       Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop()));
 626       if (ShenandoahCASBarrier) {
 627         load_store = kit->gvn().transform(new ShenandoahCompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
 628       } else {
 629         load_store = kit->gvn().transform(new CompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
 630       }
 631     } else
 632 #endif
 633     {
 634       if (ShenandoahCASBarrier) {
 635         load_store = kit->gvn().transform(new ShenandoahCompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo));
 636       } else {
 637         load_store = kit->gvn().transform(new CompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo));
 638       }
 639     }
 640 
 641     access.set_raw_access(load_store);
 642     pin_atomic_op(access);
 643 
 644 #ifdef _LP64
 645     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 646       load_store = kit->gvn().transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
 647     }
 648 #endif
 649     load_store = kit->gvn().transform(new ShenandoahLoadReferenceBarrierNode(NULL, load_store, false));
 650     return load_store;
 651   }
 652   return BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type);
 653 }
 654 
 655 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
 656                                                               Node* new_val, const Type* value_type) const {
 657   GraphKit* kit = access.kit();
 658   if (access.is_oop()) {
 659     new_val = shenandoah_storeval_barrier(kit, new_val);
 660     shenandoah_write_barrier_pre(kit, false /* do_load */,
 661                                  NULL, NULL, max_juint, NULL, NULL,
 662                                  expected_val /* pre_val */, T_OBJECT);
 663     DecoratorSet decorators = access.decorators();
 664     MemNode::MemOrd mo = access.mem_node_mo();
 665     Node* mem = access.memory();
 666     bool is_weak_cas = (decorators & C2_WEAK_CMPXCHG) != 0;
 667     Node* load_store = NULL;
 668     Node* adr = access.addr().node();
 669 #ifdef _LP64
 670     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 671       Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
 672       Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop()));
 673       if (ShenandoahCASBarrier) {
 674         if (is_weak_cas) {
 675           load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 676         } else {
 677           load_store = kit->gvn().transform(new ShenandoahCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 678         }
 679       } else {
 680         if (is_weak_cas) {
 681           load_store = kit->gvn().transform(new WeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 682         } else {
 683           load_store = kit->gvn().transform(new CompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 684         }
 685       }
 686     } else
 687 #endif
 688     {
 689       if (ShenandoahCASBarrier) {
 690         if (is_weak_cas) {
 691           load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 692         } else {
 693           load_store = kit->gvn().transform(new ShenandoahCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 694         }
 695       } else {
 696         if (is_weak_cas) {
 697           load_store = kit->gvn().transform(new WeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 698         } else {
 699           load_store = kit->gvn().transform(new CompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 700         }
 701       }
 702     }
 703     access.set_raw_access(load_store);
 704     pin_atomic_op(access);
 705     return load_store;
 706   }
 707   return BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type);
 708 }
 709 
 710 Node* ShenandoahBarrierSetC2::atomic_xchg_at_resolved(C2AtomicParseAccess& access, Node* val, const Type* value_type) const {
 711   GraphKit* kit = access.kit();
 712   if (access.is_oop()) {
 713     val = shenandoah_storeval_barrier(kit, val);
 714   }
 715   Node* result = BarrierSetC2::atomic_xchg_at_resolved(access, val, value_type);
 716   if (access.is_oop()) {
 717     result = kit->gvn().transform(new ShenandoahLoadReferenceBarrierNode(NULL, result, false));
 718     shenandoah_write_barrier_pre(kit, false /* do_load */,
 719                                  NULL, NULL, max_juint, NULL, NULL,
 720                                  result /* pre_val */, T_OBJECT);
 721   }
 722   return result;
 723 }
 724 
 725 // Support for GC barriers emitted during parsing
 726 bool ShenandoahBarrierSetC2::is_gc_barrier_node(Node* node) const {
 727   if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) return true;
 728   if (node->Opcode() != Op_CallLeaf && node->Opcode() != Op_CallLeafNoFP) {
 729     return false;
 730   }
 731   CallLeafNode *call = node->as_CallLeaf();
 732   if (call->_name == NULL) {
 733     return false;
 734   }
 735 
 736   return strcmp(call->_name, "shenandoah_clone_barrier") == 0 ||
 737          strcmp(call->_name, "shenandoah_cas_obj") == 0 ||
 738          strcmp(call->_name, "shenandoah_wb_pre") == 0;
 739 }
 740 
 741 Node* ShenandoahBarrierSetC2::step_over_gc_barrier(Node* c) const {
 742   if (c->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
 743     return c->in(ShenandoahLoadReferenceBarrierNode::ValueIn);
 744   }
 745   if (c->Opcode() == Op_ShenandoahEnqueueBarrier) {
 746     c = c->in(1);
 747   }
 748   return c;
 749 }
 750 
 751 bool ShenandoahBarrierSetC2::expand_barriers(Compile* C, PhaseIterGVN& igvn) const {
 752   return !ShenandoahBarrierC2Support::expand(C, igvn);
 753 }
 754 
 755 bool ShenandoahBarrierSetC2::optimize_loops(PhaseIdealLoop* phase, LoopOptsMode mode, VectorSet& visited, Node_Stack& nstack, Node_List& worklist) const {
 756   if (mode == LoopOptsShenandoahExpand) {
 757     assert(UseShenandoahGC, "only for shenandoah");
 758     ShenandoahBarrierC2Support::pin_and_expand(phase);
 759     return true;
 760   } else if (mode == LoopOptsShenandoahPostExpand) {
 761     assert(UseShenandoahGC, "only for shenandoah");
 762     visited.Clear();
 763     ShenandoahBarrierC2Support::optimize_after_expansion(visited, nstack, worklist, phase);
 764     return true;
 765   }
 766   return false;
 767 }
 768 
 769 bool ShenandoahBarrierSetC2::array_copy_requires_gc_barriers(bool tightly_coupled_alloc, BasicType type, bool is_clone, ArrayCopyPhase phase) const {
 770   bool is_oop = is_reference_type(type);
 771   if (!is_oop) {
 772     return false;
 773   }
 774   if (tightly_coupled_alloc) {
 775     if (phase == Optimization) {
 776       return false;
 777     }
 778     return !is_clone;
 779   }
 780   if (phase == Optimization) {
 781     return !ShenandoahStoreValEnqueueBarrier;
 782   }
 783   return true;
 784 }
 785 
 786 bool ShenandoahBarrierSetC2::clone_needs_barrier(Node* src, PhaseGVN& gvn) {
 787   const TypeOopPtr* src_type = gvn.type(src)->is_oopptr();
 788   if (src_type->isa_instptr() != NULL) {
 789     ciInstanceKlass* ik = src_type->klass()->as_instance_klass();
 790     if ((src_type->klass_is_exact() || (!ik->is_interface() && !ik->has_subklass())) && !ik->has_injected_fields()) {
 791       if (ik->has_object_fields()) {
 792         return true;
 793       } else {
 794         if (!src_type->klass_is_exact()) {
 795           Compile::current()->dependencies()->assert_leaf_type(ik);
 796         }
 797       }
 798     } else {
 799       return true;
 800         }
 801   } else if (src_type->isa_aryptr()) {
 802     BasicType src_elem  = src_type->klass()->as_array_klass()->element_type()->basic_type();
 803     if (is_reference_type(src_elem)) {
 804       return true;
 805     }
 806   } else {
 807     return true;
 808   }
 809   return false;
 810 }
 811 
 812 void ShenandoahBarrierSetC2::clone_at_expansion(PhaseMacroExpand* phase, ArrayCopyNode* ac) const {
 813   Node* ctrl = ac->in(TypeFunc::Control);
 814   Node* mem = ac->in(TypeFunc::Memory);
 815   Node* src = ac->in(ArrayCopyNode::Src);
 816   Node* src_offset = ac->in(ArrayCopyNode::SrcPos);
 817   Node* dest = ac->in(ArrayCopyNode::Dest);
 818   Node* dest_offset = ac->in(ArrayCopyNode::DestPos);
 819   Node* length = ac->in(ArrayCopyNode::Length);
 820   assert (src_offset == NULL && dest_offset == NULL, "for clone offsets should be null");
 821   assert (src->is_AddP(), "for clone the src should be the interior ptr");
 822   assert (dest->is_AddP(), "for clone the dst should be the interior ptr");
 823 
 824   if (ShenandoahCloneBarrier && clone_needs_barrier(src, phase->igvn())) {
 825     // Check if heap is has forwarded objects. If it does, we need to call into the special
 826     // routine that would fix up source references before we can continue.
 827 
 828     enum { _heap_stable = 1, _heap_unstable, PATH_LIMIT };
 829     Node* region = new RegionNode(PATH_LIMIT);
 830     Node* mem_phi = new PhiNode(region, Type::MEMORY, TypeRawPtr::BOTTOM);
 831 
 832     Node* thread = phase->transform_later(new ThreadLocalNode());
 833     Node* offset = phase->igvn().MakeConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset()));
 834     Node* gc_state_addr = phase->transform_later(new AddPNode(phase->C->top(), thread, offset));
 835 
 836     uint gc_state_idx = Compile::AliasIdxRaw;
 837     const TypePtr* gc_state_adr_type = NULL; // debug-mode-only argument
 838     debug_only(gc_state_adr_type = phase->C->get_adr_type(gc_state_idx));
 839 
 840     Node* gc_state    = phase->transform_later(new LoadBNode(ctrl, mem, gc_state_addr, gc_state_adr_type, TypeInt::BYTE, MemNode::unordered));
 841     Node* stable_and  = phase->transform_later(new AndINode(gc_state, phase->igvn().intcon(ShenandoahHeap::HAS_FORWARDED)));
 842     Node* stable_cmp  = phase->transform_later(new CmpINode(stable_and, phase->igvn().zerocon(T_INT)));
 843     Node* stable_test = phase->transform_later(new BoolNode(stable_cmp, BoolTest::ne));
 844 
 845     IfNode* stable_iff  = phase->transform_later(new IfNode(ctrl, stable_test, PROB_UNLIKELY(0.999), COUNT_UNKNOWN))->as_If();
 846     Node* stable_ctrl   = phase->transform_later(new IfFalseNode(stable_iff));
 847     Node* unstable_ctrl = phase->transform_later(new IfTrueNode(stable_iff));
 848 
 849     // Heap is stable, no need to do anything additional
 850     region->init_req(_heap_stable, stable_ctrl);
 851     mem_phi->init_req(_heap_stable, mem);
 852 
 853     // Heap is unstable, call into clone barrier stub
 854     Node* call = phase->make_leaf_call(unstable_ctrl, mem,
 855                     ShenandoahBarrierSetC2::shenandoah_clone_barrier_Type(),
 856                     CAST_FROM_FN_PTR(address, ShenandoahRuntime::shenandoah_clone_barrier),
 857                     "shenandoah_clone",
 858                     TypeRawPtr::BOTTOM,
 859                     src->in(AddPNode::Base));
 860     call = phase->transform_later(call);
 861 
 862     ctrl = phase->transform_later(new ProjNode(call, TypeFunc::Control));
 863     mem = phase->transform_later(new ProjNode(call, TypeFunc::Memory));
 864     region->init_req(_heap_unstable, ctrl);
 865     mem_phi->init_req(_heap_unstable, mem);
 866 
 867     // Wire up the actual arraycopy stub now
 868     ctrl = phase->transform_later(region);
 869     mem = phase->transform_later(mem_phi);
 870 
 871     const char* name = "arraycopy";
 872     call = phase->make_leaf_call(ctrl, mem,
 873                                  OptoRuntime::fast_arraycopy_Type(),
 874                                  phase->basictype2arraycopy(T_LONG, NULL, NULL, true, name, true),
 875                                  name, TypeRawPtr::BOTTOM,
 876                                  src, dest, length
 877                                  LP64_ONLY(COMMA phase->top()));
 878     call = phase->transform_later(call);
 879 
 880     // Hook up the whole thing into the graph
 881     phase->igvn().replace_node(ac, call);
 882   } else {
 883     BarrierSetC2::clone_at_expansion(phase, ac);
 884   }
 885 }
 886 
 887 
 888 // Support for macro expanded GC barriers
 889 void ShenandoahBarrierSetC2::register_potential_barrier_node(Node* node) const {
 890   if (node->Opcode() == Op_ShenandoahEnqueueBarrier) {
 891     state()->add_enqueue_barrier((ShenandoahEnqueueBarrierNode*) node);
 892   }
 893   if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
 894     state()->add_load_reference_barrier((ShenandoahLoadReferenceBarrierNode*) node);
 895   }
 896 }
 897 
 898 void ShenandoahBarrierSetC2::unregister_potential_barrier_node(Node* node) const {
 899   if (node->Opcode() == Op_ShenandoahEnqueueBarrier) {
 900     state()->remove_enqueue_barrier((ShenandoahEnqueueBarrierNode*) node);
 901   }
 902   if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
 903     state()->remove_load_reference_barrier((ShenandoahLoadReferenceBarrierNode*) node);
 904   }
 905 }
 906 
 907 void ShenandoahBarrierSetC2::eliminate_gc_barrier(PhaseMacroExpand* macro, Node* n) const {
 908   if (is_shenandoah_wb_pre_call(n)) {
 909     shenandoah_eliminate_wb_pre(n, &macro->igvn());
 910   }
 911 }
 912 
 913 void ShenandoahBarrierSetC2::shenandoah_eliminate_wb_pre(Node* call, PhaseIterGVN* igvn) const {
 914   assert(UseShenandoahGC && is_shenandoah_wb_pre_call(call), "");
 915   Node* c = call->as_Call()->proj_out(TypeFunc::Control);
 916   c = c->unique_ctrl_out();
 917   assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
 918   c = c->unique_ctrl_out();
 919   assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
 920   Node* iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0);
 921   assert(iff->is_If(), "expect test");
 922   if (!is_shenandoah_marking_if(igvn, iff)) {
 923     c = c->unique_ctrl_out();
 924     assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
 925     iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0);
 926     assert(is_shenandoah_marking_if(igvn, iff), "expect marking test");
 927   }
 928   Node* cmpx = iff->in(1)->in(1);
 929   igvn->replace_node(cmpx, igvn->makecon(TypeInt::CC_EQ));
 930   igvn->rehash_node_delayed(call);
 931   call->del_req(call->req()-1);
 932 }
 933 
 934 void ShenandoahBarrierSetC2::enqueue_useful_gc_barrier(PhaseIterGVN* igvn, Node* node) const {
 935   if (node->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(node)) {
 936     igvn->add_users_to_worklist(node);
 937   }
 938 }
 939 
 940 void ShenandoahBarrierSetC2::eliminate_useless_gc_barriers(Unique_Node_List &useful, Compile* C) const {
 941   for (uint i = 0; i < useful.size(); i++) {
 942     Node* n = useful.at(i);
 943     if (n->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(n)) {
 944       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 945         C->record_for_igvn(n->fast_out(i));
 946       }
 947     }
 948   }
 949   for (int i = state()->enqueue_barriers_count() - 1; i >= 0; i--) {
 950     ShenandoahEnqueueBarrierNode* n = state()->enqueue_barrier(i);
 951     if (!useful.member(n)) {
 952       state()->remove_enqueue_barrier(n);
 953     }
 954   }
 955   for (int i = state()->load_reference_barriers_count() - 1; i >= 0; i--) {
 956     ShenandoahLoadReferenceBarrierNode* n = state()->load_reference_barrier(i);
 957     if (!useful.member(n)) {
 958       state()->remove_load_reference_barrier(n);
 959     }
 960   }
 961 }
 962 
 963 void* ShenandoahBarrierSetC2::create_barrier_state(Arena* comp_arena) const {
 964   return new(comp_arena) ShenandoahBarrierSetC2State(comp_arena);
 965 }
 966 
 967 ShenandoahBarrierSetC2State* ShenandoahBarrierSetC2::state() const {
 968   return reinterpret_cast<ShenandoahBarrierSetC2State*>(Compile::current()->barrier_set_state());
 969 }
 970 
 971 // If the BarrierSetC2 state has kept macro nodes in its compilation unit state to be
 972 // expanded later, then now is the time to do so.
 973 bool ShenandoahBarrierSetC2::expand_macro_nodes(PhaseMacroExpand* macro) const { return false; }
 974 
 975 #ifdef ASSERT
 976 void ShenandoahBarrierSetC2::verify_gc_barriers(Compile* compile, CompilePhase phase) const {
 977   if (ShenandoahVerifyOptoBarriers && phase == BarrierSetC2::BeforeMacroExpand) {
 978     ShenandoahBarrierC2Support::verify(Compile::current()->root());
 979   } else if (phase == BarrierSetC2::BeforeCodeGen) {
 980     // Verify G1 pre-barriers
 981     const int marking_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_active_offset());
 982 
 983     ResourceArea *area = Thread::current()->resource_area();
 984     Unique_Node_List visited(area);
 985     Node_List worklist(area);
 986     // We're going to walk control flow backwards starting from the Root
 987     worklist.push(compile->root());
 988     while (worklist.size() > 0) {
 989       Node *x = worklist.pop();
 990       if (x == NULL || x == compile->top()) continue;
 991       if (visited.member(x)) {
 992         continue;
 993       } else {
 994         visited.push(x);
 995       }
 996 
 997       if (x->is_Region()) {
 998         for (uint i = 1; i < x->req(); i++) {
 999           worklist.push(x->in(i));
1000         }
1001       } else {
1002         worklist.push(x->in(0));
1003         // We are looking for the pattern:
1004         //                            /->ThreadLocal
1005         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
1006         //              \->ConI(0)
1007         // We want to verify that the If and the LoadB have the same control
1008         // See GraphKit::g1_write_barrier_pre()
1009         if (x->is_If()) {
1010           IfNode *iff = x->as_If();
1011           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
1012             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
1013             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
1014                 && cmp->in(1)->is_Load()) {
1015               LoadNode *load = cmp->in(1)->as_Load();
1016               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
1017                   && load->in(2)->in(3)->is_Con()
1018                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
1019 
1020                 Node *if_ctrl = iff->in(0);
1021                 Node *load_ctrl = load->in(0);
1022 
1023                 if (if_ctrl != load_ctrl) {
1024                   // Skip possible CProj->NeverBranch in infinite loops
1025                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
1026                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
1027                     if_ctrl = if_ctrl->in(0)->in(0);
1028                   }
1029                 }
1030                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
1031               }
1032             }
1033           }
1034         }
1035       }
1036     }
1037   }
1038 }
1039 #endif
1040 
1041 Node* ShenandoahBarrierSetC2::ideal_node(PhaseGVN* phase, Node* n, bool can_reshape) const {
1042   if (is_shenandoah_wb_pre_call(n)) {
1043     uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type()->domain()->cnt();
1044     if (n->req() > cnt) {
1045       Node* addp = n->in(cnt);
1046       if (has_only_shenandoah_wb_pre_uses(addp)) {
1047         n->del_req(cnt);
1048         if (can_reshape) {
1049           phase->is_IterGVN()->_worklist.push(addp);
1050         }
1051         return n;
1052       }
1053     }
1054   }
1055   if (n->Opcode() == Op_CmpP) {
1056     Node* in1 = n->in(1);
1057     Node* in2 = n->in(2);
1058     if (in1->bottom_type() == TypePtr::NULL_PTR) {
1059       in2 = step_over_gc_barrier(in2);
1060     }
1061     if (in2->bottom_type() == TypePtr::NULL_PTR) {
1062       in1 = step_over_gc_barrier(in1);
1063     }
1064     PhaseIterGVN* igvn = phase->is_IterGVN();
1065     if (in1 != n->in(1)) {
1066       if (igvn != NULL) {
1067         n->set_req_X(1, in1, igvn);
1068       } else {
1069         n->set_req(1, in1);
1070       }
1071       assert(in2 == n->in(2), "only one change");
1072       return n;
1073     }
1074     if (in2 != n->in(2)) {
1075       if (igvn != NULL) {
1076         n->set_req_X(2, in2, igvn);
1077       } else {
1078         n->set_req(2, in2);
1079       }
1080       return n;
1081     }
1082   } else if (can_reshape &&
1083              n->Opcode() == Op_If &&
1084              ShenandoahBarrierC2Support::is_heap_stable_test(n) &&
1085              n->in(0) != NULL) {
1086     Node* dom = n->in(0);
1087     Node* prev_dom = n;
1088     int op = n->Opcode();
1089     int dist = 16;
1090     // Search up the dominator tree for another heap stable test
1091     while (dom->Opcode() != op    ||  // Not same opcode?
1092            !ShenandoahBarrierC2Support::is_heap_stable_test(dom) ||  // Not same input 1?
1093            prev_dom->in(0) != dom) {  // One path of test does not dominate?
1094       if (dist < 0) return NULL;
1095 
1096       dist--;
1097       prev_dom = dom;
1098       dom = IfNode::up_one_dom(dom);
1099       if (!dom) return NULL;
1100     }
1101 
1102     // Check that we did not follow a loop back to ourselves
1103     if (n == dom) {
1104       return NULL;
1105     }
1106 
1107     return n->as_If()->dominated_by(prev_dom, phase->is_IterGVN());
1108   }
1109 
1110   return NULL;
1111 }
1112 
1113 bool ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(Node* n) {
1114   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1115     Node* u = n->fast_out(i);
1116     if (!is_shenandoah_wb_pre_call(u)) {
1117       return false;
1118     }
1119   }
1120   return n->outcnt() > 0;
1121 }
1122 
1123 bool ShenandoahBarrierSetC2::final_graph_reshaping(Compile* compile, Node* n, uint opcode) const {
1124   switch (opcode) {
1125     case Op_CallLeaf:
1126     case Op_CallLeafNoFP: {
1127       assert (n->is_Call(), "");
1128       CallNode *call = n->as_Call();
1129       if (ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(call)) {
1130         uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type()->domain()->cnt();
1131         if (call->req() > cnt) {
1132           assert(call->req() == cnt + 1, "only one extra input");
1133           Node *addp = call->in(cnt);
1134           assert(!ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(addp), "useless address computation?");
1135           call->del_req(cnt);
1136         }
1137       }
1138       return false;
1139     }
1140     case Op_ShenandoahCompareAndSwapP:
1141     case Op_ShenandoahCompareAndSwapN:
1142     case Op_ShenandoahWeakCompareAndSwapN:
1143     case Op_ShenandoahWeakCompareAndSwapP:
1144     case Op_ShenandoahCompareAndExchangeP:
1145     case Op_ShenandoahCompareAndExchangeN:
1146 #ifdef ASSERT
1147       if( VerifyOptoOopOffsets ) {
1148         MemNode* mem  = n->as_Mem();
1149         // Check to see if address types have grounded out somehow.
1150         const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
1151         ciInstanceKlass *k = tp->klass()->as_instance_klass();
1152         bool oop_offset_is_sane = k->contains_field_offset(tp->offset());
1153         assert( !tp || oop_offset_is_sane, "" );
1154       }
1155 #endif
1156       return true;
1157     case Op_ShenandoahLoadReferenceBarrier:
1158       assert(false, "should have been expanded already");
1159       return true;
1160     default:
1161       return false;
1162   }
1163 }
1164 
1165 bool ShenandoahBarrierSetC2::escape_add_to_con_graph(ConnectionGraph* conn_graph, PhaseGVN* gvn, Unique_Node_List* delayed_worklist, Node* n, uint opcode) const {
1166   switch (opcode) {
1167     case Op_ShenandoahCompareAndExchangeP:
1168     case Op_ShenandoahCompareAndExchangeN:
1169       conn_graph->add_objload_to_connection_graph(n, delayed_worklist);
1170       // fallthrough
1171     case Op_ShenandoahWeakCompareAndSwapP:
1172     case Op_ShenandoahWeakCompareAndSwapN:
1173     case Op_ShenandoahCompareAndSwapP:
1174     case Op_ShenandoahCompareAndSwapN:
1175       conn_graph->add_to_congraph_unsafe_access(n, opcode, delayed_worklist);
1176       return true;
1177     case Op_StoreP: {
1178       Node* adr = n->in(MemNode::Address);
1179       const Type* adr_type = gvn->type(adr);
1180       // Pointer stores in G1 barriers looks like unsafe access.
1181       // Ignore such stores to be able scalar replace non-escaping
1182       // allocations.
1183       if (adr_type->isa_rawptr() && adr->is_AddP()) {
1184         Node* base = conn_graph->get_addp_base(adr);
1185         if (base->Opcode() == Op_LoadP &&
1186           base->in(MemNode::Address)->is_AddP()) {
1187           adr = base->in(MemNode::Address);
1188           Node* tls = conn_graph->get_addp_base(adr);
1189           if (tls->Opcode() == Op_ThreadLocal) {
1190              int offs = (int) gvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
1191              const int buf_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset());
1192              if (offs == buf_offset) {
1193                return true; // Pre barrier previous oop value store.
1194              }
1195           }
1196         }
1197       }
1198       return false;
1199     }
1200     case Op_ShenandoahEnqueueBarrier:
1201       conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), delayed_worklist);
1202       break;
1203     case Op_ShenandoahLoadReferenceBarrier:
1204       conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), delayed_worklist);
1205       return true;
1206     default:
1207       // Nothing
1208       break;
1209   }
1210   return false;
1211 }
1212 
1213 bool ShenandoahBarrierSetC2::escape_add_final_edges(ConnectionGraph* conn_graph, PhaseGVN* gvn, Node* n, uint opcode) const {
1214   switch (opcode) {
1215     case Op_ShenandoahCompareAndExchangeP:
1216     case Op_ShenandoahCompareAndExchangeN: {
1217       Node *adr = n->in(MemNode::Address);
1218       conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
1219       // fallthrough
1220     }
1221     case Op_ShenandoahCompareAndSwapP:
1222     case Op_ShenandoahCompareAndSwapN:
1223     case Op_ShenandoahWeakCompareAndSwapP:
1224     case Op_ShenandoahWeakCompareAndSwapN:
1225       return conn_graph->add_final_edges_unsafe_access(n, opcode);
1226     case Op_ShenandoahEnqueueBarrier:
1227       conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), NULL);
1228       return true;
1229     case Op_ShenandoahLoadReferenceBarrier:
1230       conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), NULL);
1231       return true;
1232     default:
1233       // Nothing
1234       break;
1235   }
1236   return false;
1237 }
1238 
1239 bool ShenandoahBarrierSetC2::escape_has_out_with_unsafe_object(Node* n) const {
1240   return n->has_out_with(Op_ShenandoahCompareAndExchangeP) || n->has_out_with(Op_ShenandoahCompareAndExchangeN) ||
1241          n->has_out_with(Op_ShenandoahCompareAndSwapP, Op_ShenandoahCompareAndSwapN, Op_ShenandoahWeakCompareAndSwapP, Op_ShenandoahWeakCompareAndSwapN);
1242 
1243 }
1244 
1245 bool ShenandoahBarrierSetC2::matcher_find_shared_post_visit(Matcher* matcher, Node* n, uint opcode) const {
1246   switch (opcode) {
1247     case Op_ShenandoahCompareAndExchangeP:
1248     case Op_ShenandoahCompareAndExchangeN:
1249     case Op_ShenandoahWeakCompareAndSwapP:
1250     case Op_ShenandoahWeakCompareAndSwapN:
1251     case Op_ShenandoahCompareAndSwapP:
1252     case Op_ShenandoahCompareAndSwapN: {   // Convert trinary to binary-tree
1253       Node* newval = n->in(MemNode::ValueIn);
1254       Node* oldval = n->in(LoadStoreConditionalNode::ExpectedIn);
1255       Node* pair = new BinaryNode(oldval, newval);
1256       n->set_req(MemNode::ValueIn,pair);
1257       n->del_req(LoadStoreConditionalNode::ExpectedIn);
1258       return true;
1259     }
1260     default:
1261       break;
1262   }
1263   return false;
1264 }
1265 
1266 bool ShenandoahBarrierSetC2::matcher_is_store_load_barrier(Node* x, uint xop) const {
1267   return xop == Op_ShenandoahCompareAndExchangeP ||
1268          xop == Op_ShenandoahCompareAndExchangeN ||
1269          xop == Op_ShenandoahWeakCompareAndSwapP ||
1270          xop == Op_ShenandoahWeakCompareAndSwapN ||
1271          xop == Op_ShenandoahCompareAndSwapN ||
1272          xop == Op_ShenandoahCompareAndSwapP;
1273 }