/* * Copyright (c) 2018, 2019, Red Hat, Inc. All rights reserved. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/shenandoah/shenandoahBarrierSetAssembler.hpp" #include "gc/shenandoah/shenandoahForwarding.hpp" #include "gc/shenandoah/shenandoahHeap.inline.hpp" #include "gc/shenandoah/shenandoahHeapRegion.hpp" #include "gc/shenandoah/shenandoahHeuristics.hpp" #include "gc/shenandoah/shenandoahRuntime.hpp" #include "gc/shenandoah/shenandoahThreadLocalData.hpp" #include "interpreter/interpreter.hpp" #include "interpreter/interp_masm.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/thread.hpp" #include "utilities/macros.hpp" #ifdef COMPILER1 #include "c1/c1_LIRAssembler.hpp" #include "c1/c1_MacroAssembler.hpp" #include "gc/shenandoah/c1/shenandoahBarrierSetC1.hpp" #endif #define __ masm-> address ShenandoahBarrierSetAssembler::_shenandoah_lrb = NULL; void ShenandoahBarrierSetAssembler::arraycopy_prologue(MacroAssembler* masm, DecoratorSet decorators, BasicType type, Register src, Register dst, Register count) { bool dest_uninitialized = (decorators & IS_DEST_UNINITIALIZED) != 0; if (is_reference_type(type)) { if ((ShenandoahSATBBarrier && !dest_uninitialized) || ShenandoahLoadRefBarrier) { #ifdef _LP64 Register thread = r15_thread; #else Register thread = rax; if (thread == src || thread == dst || thread == count) { thread = rbx; } if (thread == src || thread == dst || thread == count) { thread = rcx; } if (thread == src || thread == dst || thread == count) { thread = rdx; } __ push(thread); __ get_thread(thread); #endif assert_different_registers(src, dst, count, thread); Label done; // Short-circuit if count == 0. __ testptr(count, count); __ jcc(Assembler::zero, done); // Avoid runtime call when not marking. Address gc_state(thread, in_bytes(ShenandoahThreadLocalData::gc_state_offset())); int flags = ShenandoahHeap::HAS_FORWARDED; if (!dest_uninitialized) { flags |= ShenandoahHeap::MARKING; } __ testb(gc_state, flags); __ jcc(Assembler::zero, done); __ pusha(); // push registers #ifdef _LP64 assert(src == rdi, "expected"); assert(dst == rsi, "expected"); assert(count == rdx, "expected"); if (UseCompressedOops) { if (dest_uninitialized) { __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_array_pre_duinit_narrow_oop_entry), src, dst, count); } else { __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_array_pre_narrow_oop_entry), src, dst, count); } } else #endif { if (dest_uninitialized) { __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_array_pre_duinit_oop_entry), src, dst, count); } else { __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_array_pre_oop_entry), src, dst, count); } } __ popa(); __ bind(done); NOT_LP64(__ pop(thread);) } } } void ShenandoahBarrierSetAssembler::shenandoah_write_barrier_pre(MacroAssembler* masm, Register obj, Register pre_val, Register thread, Register tmp, bool tosca_live, bool expand_call) { if (ShenandoahSATBBarrier) { satb_write_barrier_pre(masm, obj, pre_val, thread, tmp, tosca_live, expand_call); } } void ShenandoahBarrierSetAssembler::satb_write_barrier_pre(MacroAssembler* masm, Register obj, Register pre_val, Register thread, Register tmp, bool tosca_live, bool expand_call) { // If expand_call is true then we expand the call_VM_leaf macro // directly to skip generating the check by // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp. #ifdef _LP64 assert(thread == r15_thread, "must be"); #endif // _LP64 Label done; Label runtime; assert(pre_val != noreg, "check this code"); if (obj != noreg) { assert_different_registers(obj, pre_val, tmp); assert(pre_val != rax, "check this code"); } Address in_progress(thread, in_bytes(ShenandoahThreadLocalData::satb_mark_queue_active_offset())); Address index(thread, in_bytes(ShenandoahThreadLocalData::satb_mark_queue_index_offset())); Address buffer(thread, in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset())); Address gc_state(thread, in_bytes(ShenandoahThreadLocalData::gc_state_offset())); __ testb(gc_state, ShenandoahHeap::MARKING | ShenandoahHeap::TRAVERSAL); __ jcc(Assembler::zero, done); // Do we need to load the previous value? if (obj != noreg) { __ load_heap_oop(pre_val, Address(obj, 0), noreg, noreg, AS_RAW); } // Is the previous value null? __ cmpptr(pre_val, (int32_t) NULL_WORD); __ jcc(Assembler::equal, done); // Can we store original value in the thread's buffer? // Is index == 0? // (The index field is typed as size_t.) __ movptr(tmp, index); // tmp := *index_adr __ cmpptr(tmp, 0); // tmp == 0? __ jcc(Assembler::equal, runtime); // If yes, goto runtime __ subptr(tmp, wordSize); // tmp := tmp - wordSize __ movptr(index, tmp); // *index_adr := tmp __ addptr(tmp, buffer); // tmp := tmp + *buffer_adr // Record the previous value __ movptr(Address(tmp, 0), pre_val); __ jmp(done); __ bind(runtime); // save the live input values if(tosca_live) __ push(rax); if (obj != noreg && obj != rax) __ push(obj); if (pre_val != rax) __ push(pre_val); // Calling the runtime using the regular call_VM_leaf mechanism generates // code (generated by InterpreterMacroAssember::call_VM_leaf_base) // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL. // // If we care generating the pre-barrier without a frame (e.g. in the // intrinsified Reference.get() routine) then ebp might be pointing to // the caller frame and so this check will most likely fail at runtime. // // Expanding the call directly bypasses the generation of the check. // So when we do not have have a full interpreter frame on the stack // expand_call should be passed true. NOT_LP64( __ push(thread); ) #ifdef _LP64 // We move pre_val into c_rarg0 early, in order to avoid smashing it, should // pre_val be c_rarg1 (where the call prologue would copy thread argument). // Note: this should not accidentally smash thread, because thread is always r15. assert(thread != c_rarg0, "smashed arg"); if (c_rarg0 != pre_val) { __ mov(c_rarg0, pre_val); } #endif if (expand_call) { LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); ) #ifdef _LP64 if (c_rarg1 != thread) { __ mov(c_rarg1, thread); } // Already moved pre_val into c_rarg0 above #else __ push(thread); __ push(pre_val); #endif __ MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry), 2); } else { __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry), LP64_ONLY(c_rarg0) NOT_LP64(pre_val), thread); } NOT_LP64( __ pop(thread); ) // save the live input values if (pre_val != rax) __ pop(pre_val); if (obj != noreg && obj != rax) __ pop(obj); if(tosca_live) __ pop(rax); __ bind(done); } void ShenandoahBarrierSetAssembler::load_reference_barrier_not_null(MacroAssembler* masm, Register dst, Address src) { assert(ShenandoahLoadRefBarrier, "Should be enabled"); Label done; #ifdef _LP64 Register thread = r15_thread; #else Register thread = rcx; if (thread == dst) { thread = rbx; } __ push(thread); __ get_thread(thread); #endif Address gc_state(thread, in_bytes(ShenandoahThreadLocalData::gc_state_offset())); __ testb(gc_state, ShenandoahHeap::HAS_FORWARDED); __ jccb(Assembler::zero, done); // Use rsi for src address const Register src_addr = rsi; // Setup address parameter first, if it does not clobber oop in dst bool need_addr_setup = (src_addr != dst); if (need_addr_setup) { __ push(src_addr); __ lea(src_addr, src); if (dst != rax) { // Move obj into rax and save rax __ push(rax); __ movptr(rax, dst); } } else { // dst == rsi __ push(rax); __ movptr(rax, dst); // we can clobber it, since it is outgoing register __ lea(src_addr, src); } __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, ShenandoahBarrierSetAssembler::shenandoah_lrb()))); if (need_addr_setup) { if (dst != rax) { __ movptr(dst, rax); __ pop(rax); } __ pop(src_addr); } else { __ movptr(dst, rax); __ pop(rax); } __ bind(done); #ifndef _LP64 __ pop(thread); #endif } void ShenandoahBarrierSetAssembler::load_reference_barrier_native(MacroAssembler* masm, Register dst, Address src) { if (!ShenandoahLoadRefBarrier) { return; } Label done; Label not_null; Label slow_path; __ block_comment("load_reference_barrier_native { "); // null check __ testptr(dst, dst); __ jcc(Assembler::notZero, not_null); __ jmp(done); __ bind(not_null); #ifdef _LP64 Register thread = r15_thread; #else Register thread = rcx; if (thread == dst) { thread = rbx; } __ push(thread); __ get_thread(thread); #endif assert_different_registers(dst, thread); Address gc_state(thread, in_bytes(ShenandoahThreadLocalData::gc_state_offset())); __ testb(gc_state, ShenandoahHeap::EVACUATION); #ifndef _LP64 __ pop(thread); #endif __ jccb(Assembler::notZero, slow_path); __ jmp(done); __ bind(slow_path); if (dst != rax) { __ push(rax); } __ push(rcx); __ push(rdx); __ push(rdi); __ push(rsi); #ifdef _LP64 __ push(r8); __ push(r9); __ push(r10); __ push(r11); __ push(r12); __ push(r13); __ push(r14); __ push(r15); #endif assert_different_registers(dst, rsi); __ lea(rsi, src); __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_native), dst, rsi); #ifdef _LP64 __ pop(r15); __ pop(r14); __ pop(r13); __ pop(r12); __ pop(r11); __ pop(r10); __ pop(r9); __ pop(r8); #endif __ pop(rsi); __ pop(rdi); __ pop(rdx); __ pop(rcx); if (dst != rax) { __ movptr(dst, rax); __ pop(rax); } __ bind(done); __ block_comment("load_reference_barrier_native { "); } void ShenandoahBarrierSetAssembler::storeval_barrier(MacroAssembler* masm, Register dst, Register tmp) { if (ShenandoahStoreValEnqueueBarrier) { storeval_barrier_impl(masm, dst, tmp); } } void ShenandoahBarrierSetAssembler::storeval_barrier_impl(MacroAssembler* masm, Register dst, Register tmp) { assert(ShenandoahStoreValEnqueueBarrier, "should be enabled"); if (dst == noreg) return; if (ShenandoahStoreValEnqueueBarrier) { // The set of registers to be saved+restored is the same as in the write-barrier above. // Those are the commonly used registers in the interpreter. __ pusha(); // __ push_callee_saved_registers(); __ subptr(rsp, 2 * Interpreter::stackElementSize); __ movdbl(Address(rsp, 0), xmm0); #ifdef _LP64 Register thread = r15_thread; #else Register thread = rcx; if (thread == dst || thread == tmp) { thread = rdi; } if (thread == dst || thread == tmp) { thread = rbx; } __ get_thread(thread); #endif assert_different_registers(dst, tmp, thread); satb_write_barrier_pre(masm, noreg, dst, thread, tmp, true, false); __ movdbl(xmm0, Address(rsp, 0)); __ addptr(rsp, 2 * Interpreter::stackElementSize); //__ pop_callee_saved_registers(); __ popa(); } } void ShenandoahBarrierSetAssembler::load_reference_barrier(MacroAssembler* masm, Register dst, Address src) { if (ShenandoahLoadRefBarrier) { Label done; __ testptr(dst, dst); __ jcc(Assembler::zero, done); load_reference_barrier_not_null(masm, dst, src); __ bind(done); } } void ShenandoahBarrierSetAssembler::load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type, Register dst, Address src, Register tmp1, Register tmp_thread) { bool on_oop = is_reference_type(type); bool on_weak = (decorators & ON_WEAK_OOP_REF) != 0; bool on_phantom = (decorators & ON_PHANTOM_OOP_REF) != 0; bool not_in_heap = (decorators & IN_NATIVE) != 0; bool on_reference = on_weak || on_phantom; bool is_traversal_mode = ShenandoahHeap::heap()->is_traversal_mode(); bool keep_alive = ((decorators & AS_NO_KEEPALIVE) == 0) || is_traversal_mode; Register result_dst = dst; bool use_tmp1_for_dst = false; if (on_oop) { // We want to preserve src if (dst == src.base() || dst == src.index()) { // Use tmp1 for dst if possible, as it is not used in BarrierAssembler::load_at() if (tmp1->is_valid() && tmp1 != src.base() && tmp1 != src.index()) { dst = tmp1; use_tmp1_for_dst = true; } else { dst = rdi; __ push(dst); } } assert_different_registers(dst, src.base(), src.index()); } BarrierSetAssembler::load_at(masm, decorators, type, dst, src, tmp1, tmp_thread); if (on_oop) { if (not_in_heap && !is_traversal_mode) { load_reference_barrier_native(masm, dst, src); } else { load_reference_barrier(masm, dst, src); } if (dst != result_dst) { __ movptr(result_dst, dst); if (!use_tmp1_for_dst) { __ pop(dst); } dst = result_dst; } if (ShenandoahKeepAliveBarrier && on_reference && keep_alive) { __ push_IU_state(); const Register thread = NOT_LP64(tmp_thread) LP64_ONLY(r15_thread); assert_different_registers(dst, tmp1, tmp_thread); NOT_LP64(__ get_thread(thread)); // Generate the SATB pre-barrier code to log the value of // the referent field in an SATB buffer. shenandoah_write_barrier_pre(masm /* masm */, noreg /* obj */, dst /* pre_val */, thread /* thread */, tmp1 /* tmp */, true /* tosca_live */, true /* expand_call */); __ pop_IU_state(); } } } void ShenandoahBarrierSetAssembler::store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type, Address dst, Register val, Register tmp1, Register tmp2) { bool on_oop = is_reference_type(type); bool in_heap = (decorators & IN_HEAP) != 0; bool as_normal = (decorators & AS_NORMAL) != 0; if (on_oop && in_heap) { bool needs_pre_barrier = as_normal; Register tmp3 = LP64_ONLY(r8) NOT_LP64(rsi); Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); // flatten object address if needed // We do it regardless of precise because we need the registers if (dst.index() == noreg && dst.disp() == 0) { if (dst.base() != tmp1) { __ movptr(tmp1, dst.base()); } } else { __ lea(tmp1, dst); } assert_different_registers(val, tmp1, tmp2, tmp3, rthread); #ifndef _LP64 __ get_thread(rthread); InterpreterMacroAssembler *imasm = static_cast(masm); imasm->save_bcp(); #endif if (needs_pre_barrier) { shenandoah_write_barrier_pre(masm /*masm*/, tmp1 /* obj */, tmp2 /* pre_val */, rthread /* thread */, tmp3 /* tmp */, val != noreg /* tosca_live */, false /* expand_call */); } if (val == noreg) { BarrierSetAssembler::store_at(masm, decorators, type, Address(tmp1, 0), val, noreg, noreg); } else { storeval_barrier(masm, val, tmp3); BarrierSetAssembler::store_at(masm, decorators, type, Address(tmp1, 0), val, noreg, noreg); } NOT_LP64(imasm->restore_bcp()); } else { BarrierSetAssembler::store_at(masm, decorators, type, dst, val, tmp1, tmp2); } } void ShenandoahBarrierSetAssembler::try_resolve_jobject_in_native(MacroAssembler* masm, Register jni_env, Register obj, Register tmp, Label& slowpath) { Label done; // Resolve jobject BarrierSetAssembler::try_resolve_jobject_in_native(masm, jni_env, obj, tmp, slowpath); // Check for null. __ testptr(obj, obj); __ jcc(Assembler::zero, done); Address gc_state(jni_env, ShenandoahThreadLocalData::gc_state_offset() - JavaThread::jni_environment_offset()); __ testb(gc_state, ShenandoahHeap::EVACUATION); __ jccb(Assembler::notZero, slowpath); __ bind(done); } // Special Shenandoah CAS implementation that handles false negatives // due to concurrent evacuation. void ShenandoahBarrierSetAssembler::cmpxchg_oop(MacroAssembler* masm, Register res, Address addr, Register oldval, Register newval, bool exchange, Register tmp1, Register tmp2) { assert(ShenandoahCASBarrier, "Should only be used when CAS barrier is enabled"); assert(oldval == rax, "must be in rax for implicit use in cmpxchg"); assert_different_registers(oldval, newval, tmp1, tmp2); Label L_success, L_failure; // Remember oldval for retry logic below #ifdef _LP64 if (UseCompressedOops) { __ movl(tmp1, oldval); } else #endif { __ movptr(tmp1, oldval); } // Step 1. Fast-path. // // Try to CAS with given arguments. If successful, then we are done. if (os::is_MP()) __ lock(); #ifdef _LP64 if (UseCompressedOops) { __ cmpxchgl(newval, addr); } else #endif { __ cmpxchgptr(newval, addr); } __ jcc(Assembler::equal, L_success); // Step 2. CAS had failed. This may be a false negative. // // The trouble comes when we compare the to-space pointer with the from-space // pointer to the same object. To resolve this, it will suffice to resolve // the value from memory -- this will give both to-space pointers. // If they mismatch, then it was a legitimate failure. // // Before reaching to resolve sequence, see if we can avoid the whole shebang // with filters. // Filter: when offending in-memory value is NULL, the failure is definitely legitimate __ testptr(oldval, oldval); __ jcc(Assembler::zero, L_failure); // Filter: when heap is stable, the failure is definitely legitimate #ifdef _LP64 const Register thread = r15_thread; #else const Register thread = tmp2; __ get_thread(thread); #endif Address gc_state(thread, in_bytes(ShenandoahThreadLocalData::gc_state_offset())); __ testb(gc_state, ShenandoahHeap::HAS_FORWARDED); __ jcc(Assembler::zero, L_failure); #ifdef _LP64 if (UseCompressedOops) { __ movl(tmp2, oldval); __ decode_heap_oop(tmp2); } else #endif { __ movptr(tmp2, oldval); } // Decode offending in-memory value. // Test if-forwarded __ testb(Address(tmp2, oopDesc::mark_offset_in_bytes()), markWord::marked_value); __ jcc(Assembler::noParity, L_failure); // When odd number of bits, then not forwarded __ jcc(Assembler::zero, L_failure); // When it is 00, then also not forwarded // Load and mask forwarding pointer __ movptr(tmp2, Address(tmp2, oopDesc::mark_offset_in_bytes())); __ shrptr(tmp2, 2); __ shlptr(tmp2, 2); #ifdef _LP64 if (UseCompressedOops) { __ decode_heap_oop(tmp1); // decode for comparison } #endif // Now we have the forwarded offender in tmp2. // Compare and if they don't match, we have legitimate failure __ cmpptr(tmp1, tmp2); __ jcc(Assembler::notEqual, L_failure); // Step 3. Need to fix the memory ptr before continuing. // // At this point, we have from-space oldval in the register, and its to-space // address is in tmp2. Let's try to update it into memory. We don't care if it // succeeds or not. If it does, then the retrying CAS would see it and succeed. // If this fixup fails, this means somebody else beat us to it, and necessarily // with to-space ptr store. We still have to do the retry, because the GC might // have updated the reference for us. #ifdef _LP64 if (UseCompressedOops) { __ encode_heap_oop(tmp2); // previously decoded at step 2. } #endif if (os::is_MP()) __ lock(); #ifdef _LP64 if (UseCompressedOops) { __ cmpxchgl(tmp2, addr); } else #endif { __ cmpxchgptr(tmp2, addr); } // Step 4. Try to CAS again. // // This is guaranteed not to have false negatives, because oldval is definitely // to-space, and memory pointer is to-space as well. Nothing is able to store // from-space ptr into memory anymore. Make sure oldval is restored, after being // garbled during retries. // #ifdef _LP64 if (UseCompressedOops) { __ movl(oldval, tmp2); } else #endif { __ movptr(oldval, tmp2); } if (os::is_MP()) __ lock(); #ifdef _LP64 if (UseCompressedOops) { __ cmpxchgl(newval, addr); } else #endif { __ cmpxchgptr(newval, addr); } if (!exchange) { __ jccb(Assembler::equal, L_success); // fastpath, peeking into Step 5, no need to jump } // Step 5. If we need a boolean result out of CAS, set the flag appropriately. // and promote the result. Note that we handle the flag from both the 1st and 2nd CAS. // Otherwise, failure witness for CAE is in oldval on all paths, and we can return. if (exchange) { __ bind(L_failure); __ bind(L_success); } else { assert(res != NULL, "need result register"); Label exit; __ bind(L_failure); __ xorptr(res, res); __ jmpb(exit); __ bind(L_success); __ movptr(res, 1); __ bind(exit); } } #undef __ #ifdef COMPILER1 #define __ ce->masm()-> void ShenandoahBarrierSetAssembler::gen_pre_barrier_stub(LIR_Assembler* ce, ShenandoahPreBarrierStub* stub) { ShenandoahBarrierSetC1* bs = (ShenandoahBarrierSetC1*)BarrierSet::barrier_set()->barrier_set_c1(); // At this point we know that marking is in progress. // If do_load() is true then we have to emit the // load of the previous value; otherwise it has already // been loaded into _pre_val. __ bind(*stub->entry()); assert(stub->pre_val()->is_register(), "Precondition."); Register pre_val_reg = stub->pre_val()->as_register(); if (stub->do_load()) { ce->mem2reg(stub->addr(), stub->pre_val(), T_OBJECT, stub->patch_code(), stub->info(), false /*wide*/, false /*unaligned*/); } __ cmpptr(pre_val_reg, (int32_t)NULL_WORD); __ jcc(Assembler::equal, *stub->continuation()); ce->store_parameter(stub->pre_val()->as_register(), 0); __ call(RuntimeAddress(bs->pre_barrier_c1_runtime_code_blob()->code_begin())); __ jmp(*stub->continuation()); } void ShenandoahBarrierSetAssembler::gen_load_reference_barrier_stub(LIR_Assembler* ce, ShenandoahLoadReferenceBarrierStub* stub) { ShenandoahBarrierSetC1* bs = (ShenandoahBarrierSetC1*)BarrierSet::barrier_set()->barrier_set_c1(); __ bind(*stub->entry()); Register obj = stub->obj()->as_register(); Register res = stub->result()->as_register(); Register addr = stub->addr()->as_register(); Register tmp1 = stub->tmp1()->as_register(); Register tmp2 = stub->tmp2()->as_register(); assert_different_registers(obj, res, addr, tmp1, tmp2); Label slow_path; assert(res == rax, "result must arrive in rax"); if (res != obj) { __ mov(res, obj); } // Check for null. __ testptr(res, res); __ jcc(Assembler::zero, *stub->continuation()); // Check for object being in the collection set. __ mov(tmp1, res); __ shrptr(tmp1, ShenandoahHeapRegion::region_size_bytes_shift_jint()); __ movptr(tmp2, (intptr_t) ShenandoahHeap::in_cset_fast_test_addr()); #ifdef _LP64 __ movbool(tmp2, Address(tmp2, tmp1, Address::times_1)); __ testbool(tmp2); #else // On x86_32, C1 register allocator can give us the register without 8-bit support. // Do the full-register access and test to avoid compilation failures. __ movptr(tmp2, Address(tmp2, tmp1, Address::times_1)); __ testptr(tmp2, 0xFF); #endif __ jcc(Assembler::zero, *stub->continuation()); __ bind(slow_path); ce->store_parameter(res, 0); ce->store_parameter(addr, 1); __ call(RuntimeAddress(bs->load_reference_barrier_rt_code_blob()->code_begin())); __ jmp(*stub->continuation()); } #undef __ #define __ sasm-> void ShenandoahBarrierSetAssembler::generate_c1_pre_barrier_runtime_stub(StubAssembler* sasm) { __ prologue("shenandoah_pre_barrier", false); // arg0 : previous value of memory __ push(rax); __ push(rdx); const Register pre_val = rax; const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread); const Register tmp = rdx; NOT_LP64(__ get_thread(thread);) Address queue_index(thread, in_bytes(ShenandoahThreadLocalData::satb_mark_queue_index_offset())); Address buffer(thread, in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset())); Label done; Label runtime; // Is SATB still active? Address gc_state(thread, in_bytes(ShenandoahThreadLocalData::gc_state_offset())); __ testb(gc_state, ShenandoahHeap::MARKING | ShenandoahHeap::TRAVERSAL); __ jcc(Assembler::zero, done); // Can we store original value in the thread's buffer? __ movptr(tmp, queue_index); __ testptr(tmp, tmp); __ jcc(Assembler::zero, runtime); __ subptr(tmp, wordSize); __ movptr(queue_index, tmp); __ addptr(tmp, buffer); // prev_val (rax) __ load_parameter(0, pre_val); __ movptr(Address(tmp, 0), pre_val); __ jmp(done); __ bind(runtime); __ save_live_registers_no_oop_map(true); // load the pre-value __ load_parameter(0, rcx); __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry), rcx, thread); __ restore_live_registers(true); __ bind(done); __ pop(rdx); __ pop(rax); __ epilogue(); } void ShenandoahBarrierSetAssembler::generate_c1_load_reference_barrier_runtime_stub(StubAssembler* sasm) { __ prologue("shenandoah_load_reference_barrier", false); // arg0 : object to be resolved __ save_live_registers_no_oop_map(true); #ifdef _LP64 __ load_parameter(0, c_rarg0); __ load_parameter(1, c_rarg1); if (UseCompressedOops) { __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_narrow), c_rarg0, c_rarg1); } else { __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier), c_rarg0, c_rarg1); } #else __ load_parameter(0, rax); __ load_parameter(1, rbx); __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier), rax, rbx); #endif __ restore_live_registers_except_rax(true); __ epilogue(); } #undef __ #endif // COMPILER1 address ShenandoahBarrierSetAssembler::shenandoah_lrb() { assert(_shenandoah_lrb != NULL, "need load reference barrier stub"); return _shenandoah_lrb; } #define __ cgen->assembler()-> /* * Incoming parameters: * rax: oop * rsi: load address */ address ShenandoahBarrierSetAssembler::generate_shenandoah_lrb(StubCodeGenerator* cgen) { __ align(CodeEntryAlignment); StubCodeMark mark(cgen, "StubRoutines", "shenandoah_lrb"); address start = __ pc(); Label resolve_oop, slow_path; // We use RDI, which also serves as argument register for slow call. // RAX always holds the src object ptr, except after the slow call, // then it holds the result. R8/RBX is used as temporary register. Register tmp1 = rdi; Register tmp2 = LP64_ONLY(r8) NOT_LP64(rbx); __ push(tmp1); __ push(tmp2); // Check for object being in the collection set. __ mov(tmp1, rax); __ shrptr(tmp1, ShenandoahHeapRegion::region_size_bytes_shift_jint()); __ movptr(tmp2, (intptr_t) ShenandoahHeap::in_cset_fast_test_addr()); __ movbool(tmp2, Address(tmp2, tmp1, Address::times_1)); __ testbool(tmp2); __ jccb(Assembler::notZero, resolve_oop); __ pop(tmp2); __ pop(tmp1); __ ret(0); // Test if object is already resolved. __ bind(resolve_oop); __ movptr(tmp2, Address(rax, oopDesc::mark_offset_in_bytes())); // Test if both lowest bits are set. We trick it by negating the bits // then test for both bits clear. __ notptr(tmp2); __ testb(tmp2, markWord::marked_value); __ jccb(Assembler::notZero, slow_path); // Clear both lower bits. It's still inverted, so set them, and then invert back. __ orptr(tmp2, markWord::marked_value); __ notptr(tmp2); // At this point, tmp2 contains the decoded forwarding pointer. __ mov(rax, tmp2); __ pop(tmp2); __ pop(tmp1); __ ret(0); __ bind(slow_path); __ push(rcx); __ push(rdx); __ push(rdi); #ifdef _LP64 __ push(r8); __ push(r9); __ push(r10); __ push(r11); __ push(r12); __ push(r13); __ push(r14); __ push(r15); #endif __ push(rbp); __ movptr(rbp, rsp); __ andptr(rsp, -StackAlignmentInBytes); __ push_FPU_state(); if (UseCompressedOops) { __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_narrow), rax, rsi); } else { __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier), rax, rsi); } __ pop_FPU_state(); __ movptr(rsp, rbp); __ pop(rbp); #ifdef _LP64 __ pop(r15); __ pop(r14); __ pop(r13); __ pop(r12); __ pop(r11); __ pop(r10); __ pop(r9); __ pop(r8); #endif __ pop(rdi); __ pop(rdx); __ pop(rcx); __ pop(tmp2); __ pop(tmp1); __ ret(0); return start; } #undef __ void ShenandoahBarrierSetAssembler::barrier_stubs_init() { if (ShenandoahLoadRefBarrier) { int stub_code_size = 4096; ResourceMark rm; BufferBlob* bb = BufferBlob::create("shenandoah_barrier_stubs", stub_code_size); CodeBuffer buf(bb); StubCodeGenerator cgen(&buf); _shenandoah_lrb = generate_shenandoah_lrb(&cgen); } }