/* * Copyright (c) 2014, 2020, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "classfile/altHashing.hpp" #include "classfile/javaClasses.inline.hpp" #include "gc/shared/stringdedup/stringDedup.hpp" #include "gc/shared/stringdedup/stringDedupTable.hpp" #include "gc/shared/suspendibleThreadSet.hpp" #include "logging/log.hpp" #include "memory/padded.inline.hpp" #include "memory/universe.hpp" #include "oops/access.inline.hpp" #include "oops/arrayOop.inline.hpp" #include "oops/oop.inline.hpp" #include "oops/typeArrayOop.hpp" #include "runtime/atomic.hpp" #include "runtime/mutexLocker.hpp" #include "runtime/safepointVerifiers.hpp" // // List of deduplication table entries. Links table // entries together using their _next fields. // class StringDedupEntryList : public CHeapObj { private: StringDedupEntry* _list; size_t _length; public: StringDedupEntryList() : _list(NULL), _length(0) { } void add(StringDedupEntry* entry) { entry->set_next(_list); _list = entry; _length++; } StringDedupEntry* remove() { StringDedupEntry* entry = _list; if (entry != NULL) { _list = entry->next(); _length--; } return entry; } StringDedupEntry* remove_all() { StringDedupEntry* list = _list; _list = NULL; return list; } size_t length() { return _length; } }; // // Cache of deduplication table entries. This cache provides fast allocation and // reuse of table entries to lower the pressure on the underlying allocator. // But more importantly, it provides fast/deferred freeing of table entries. This // is important because freeing of table entries is done during stop-the-world // phases and it is not uncommon for large number of entries to be freed at once. // Tables entries that are freed during these phases are placed onto a freelist in // the cache. The deduplication thread, which executes in a concurrent phase, will // later reuse or free the underlying memory for these entries. // // The cache allows for single-threaded allocations and multi-threaded frees. // Allocations are synchronized by StringDedupTable_lock as part of a table // modification. // class StringDedupEntryCache : public CHeapObj { private: // One cache/overflow list per GC worker to allow lock less freeing of // entries while doing a parallel scan of the table. Using PaddedEnd to // avoid false sharing. size_t _nlists; size_t _max_list_length; PaddedEnd* _cached; PaddedEnd* _overflowed; public: StringDedupEntryCache(size_t max_size); ~StringDedupEntryCache(); // Set max number of table entries to cache. void set_max_size(size_t max_size); // Get a table entry from the cache, or allocate a new entry if the cache is empty. StringDedupEntry* alloc(); // Insert a table entry into the cache. void free(StringDedupEntry* entry, uint worker_id); // Returns current number of entries in the cache. size_t size(); // Deletes overflowed entries. void delete_overflowed(); }; StringDedupEntryCache::StringDedupEntryCache(size_t max_size) : _nlists(ParallelGCThreads), _max_list_length(0), _cached(PaddedArray::create_unfreeable((uint)_nlists)), _overflowed(PaddedArray::create_unfreeable((uint)_nlists)) { set_max_size(max_size); } StringDedupEntryCache::~StringDedupEntryCache() { ShouldNotReachHere(); } void StringDedupEntryCache::set_max_size(size_t size) { _max_list_length = size / _nlists; } StringDedupEntry* StringDedupEntryCache::alloc() { for (size_t i = 0; i < _nlists; i++) { StringDedupEntry* entry = _cached[i].remove(); if (entry != NULL) { return entry; } } return new StringDedupEntry(); } void StringDedupEntryCache::free(StringDedupEntry* entry, uint worker_id) { assert(entry->obj() != NULL, "Double free"); assert(worker_id < _nlists, "Invalid worker id"); entry->set_obj(NULL); entry->set_hash(0); if (_cached[worker_id].length() < _max_list_length) { // Cache is not full _cached[worker_id].add(entry); } else { // Cache is full, add to overflow list for later deletion _overflowed[worker_id].add(entry); } } size_t StringDedupEntryCache::size() { size_t size = 0; for (size_t i = 0; i < _nlists; i++) { size += _cached[i].length(); } return size; } void StringDedupEntryCache::delete_overflowed() { double start = os::elapsedTime(); uintx count = 0; for (size_t i = 0; i < _nlists; i++) { StringDedupEntry* entry; { // The overflow list can be modified during safepoints, therefore // we temporarily join the suspendible thread set while removing // all entries from the list. SuspendibleThreadSetJoiner sts_join; entry = _overflowed[i].remove_all(); } // Delete all entries while (entry != NULL) { StringDedupEntry* next = entry->next(); delete entry; entry = next; count++; } } double end = os::elapsedTime(); log_trace(gc, stringdedup)("Deleted " UINTX_FORMAT " entries, " STRDEDUP_TIME_FORMAT_MS, count, STRDEDUP_TIME_PARAM_MS(end - start)); } StringDedupTable* StringDedupTable::_table = NULL; StringDedupEntryCache* StringDedupTable::_entry_cache = NULL; const size_t StringDedupTable::_min_size = (1 << 10); // 1024 const size_t StringDedupTable::_max_size = (1 << 24); // 16777216 const double StringDedupTable::_grow_load_factor = 2.0; // Grow table at 200% load const double StringDedupTable::_shrink_load_factor = _grow_load_factor / 3.0; // Shrink table at 67% load const double StringDedupTable::_max_cache_factor = 0.1; // Cache a maximum of 10% of the table size const uintx StringDedupTable::_rehash_multiple = 60; // Hash bucket has 60 times more collisions than expected const uintx StringDedupTable::_rehash_threshold = (uintx)(_rehash_multiple * _grow_load_factor); uintx StringDedupTable::_entries_added = 0; volatile uintx StringDedupTable::_entries_removed = 0; uintx StringDedupTable::_resize_count = 0; uintx StringDedupTable::_rehash_count = 0; StringDedupTable* StringDedupTable::_resized_table = NULL; StringDedupTable* StringDedupTable::_rehashed_table = NULL; volatile size_t StringDedupTable::_claimed_index = 0; StringDedupTable::StringDedupTable(size_t size, jint hash_seed) : _size(size), _entries(0), _shrink_threshold((uintx)(size * _shrink_load_factor)), _grow_threshold((uintx)(size * _grow_load_factor)), _rehash_needed(false), _hash_seed(hash_seed) { assert(is_power_of_2(size), "Table size must be a power of 2"); _buckets = NEW_C_HEAP_ARRAY(StringDedupEntry*, _size, mtGC); memset(_buckets, 0, _size * sizeof(StringDedupEntry*)); } StringDedupTable::~StringDedupTable() { FREE_C_HEAP_ARRAY(G1StringDedupEntry*, _buckets); } void StringDedupTable::create() { assert(_table == NULL, "One string deduplication table allowed"); _entry_cache = new StringDedupEntryCache(_min_size * _max_cache_factor); _table = new StringDedupTable(_min_size); } void StringDedupTable::add(typeArrayOop value, bool latin1, unsigned int hash, StringDedupEntry** list) { StringDedupEntry* entry = _entry_cache->alloc(); entry->set_obj(value); entry->set_hash(hash); entry->set_latin1(latin1); entry->set_next(*list); *list = entry; _entries++; } void StringDedupTable::remove(StringDedupEntry** pentry, uint worker_id) { StringDedupEntry* entry = *pentry; *pentry = entry->next(); _entry_cache->free(entry, worker_id); } void StringDedupTable::transfer(StringDedupEntry** pentry, StringDedupTable* dest) { StringDedupEntry* entry = *pentry; *pentry = entry->next(); unsigned int hash = entry->hash(); size_t index = dest->hash_to_index(hash); StringDedupEntry** list = dest->bucket(index); entry->set_next(*list); *list = entry; } typeArrayOop StringDedupTable::lookup(typeArrayOop value, bool latin1, unsigned int hash, StringDedupEntry** list, uintx &count) { for (StringDedupEntry* entry = *list; entry != NULL; entry = entry->next()) { if (entry->hash() == hash && entry->latin1() == latin1) { oop* obj_addr = (oop*)entry->obj_addr(); oop obj = NativeAccess::oop_load(obj_addr); if (java_lang_String::value_equals(value, static_cast(obj))) { obj = NativeAccess::oop_load(obj_addr); return static_cast(obj); } } count++; } // Not found return NULL; } typeArrayOop StringDedupTable::lookup_or_add_inner(typeArrayOop value, bool latin1, unsigned int hash) { size_t index = hash_to_index(hash); StringDedupEntry** list = bucket(index); uintx count = 0; // Lookup in list typeArrayOop existing_value = lookup(value, latin1, hash, list, count); // Check if rehash is needed if (count > _rehash_threshold) { _rehash_needed = true; } if (existing_value == NULL) { // Not found, add new entry add(value, latin1, hash, list); // Update statistics _entries_added++; } return existing_value; } unsigned int StringDedupTable::hash_code(typeArrayOop value, bool latin1) { unsigned int hash; int length = value->length(); if (latin1) { const jbyte* data = (jbyte*)value->base(T_BYTE); if (use_java_hash()) { hash = java_lang_String::hash_code(data, length); } else { hash = AltHashing::murmur3_32(_table->_hash_seed, data, length); } } else { length /= sizeof(jchar) / sizeof(jbyte); // Convert number of bytes to number of chars const jchar* data = (jchar*)value->base(T_CHAR); if (use_java_hash()) { hash = java_lang_String::hash_code(data, length); } else { hash = AltHashing::murmur3_32(_table->_hash_seed, data, length); } } return hash; } void StringDedupTable::deduplicate(oop java_string, StringDedupStat* stat) { assert(java_lang_String::is_instance(java_string), "Must be a string"); NoSafepointVerifier nsv; stat->inc_inspected(); typeArrayOop value = java_lang_String::value(java_string); if (value == NULL) { // String has no value stat->inc_skipped(); return; } bool latin1 = java_lang_String::is_latin1(java_string); unsigned int hash = 0; if (use_java_hash()) { if (!java_lang_String::hash_is_set(java_string)) { stat->inc_hashed(); } hash = java_lang_String::hash_code(java_string); } else { // Compute hash hash = hash_code(value, latin1); stat->inc_hashed(); } typeArrayOop existing_value = lookup_or_add(value, latin1, hash); if (existing_value == value) { // Same value, already known stat->inc_known(); return; } // Get size of value array uintx size_in_bytes = value->size() * HeapWordSize; stat->inc_new(size_in_bytes); if (existing_value != NULL) { // Existing value found, deduplicate string java_lang_String::set_value(java_string, existing_value); stat->deduped(value, size_in_bytes); } } bool StringDedupTable::is_resizing() { return _resized_table != NULL; } bool StringDedupTable::is_rehashing() { return _rehashed_table != NULL; } StringDedupTable* StringDedupTable::prepare_resize() { size_t size = _table->_size; // Check if the hashtable needs to be resized if (_table->_entries > _table->_grow_threshold) { // Grow table, double the size size *= 2; if (size > _max_size) { // Too big, don't resize return NULL; } } else if (_table->_entries < _table->_shrink_threshold) { // Shrink table, half the size size /= 2; if (size < _min_size) { // Too small, don't resize return NULL; } } else if (StringDeduplicationResizeALot) { // Force grow size *= 2; if (size > _max_size) { // Too big, force shrink instead size /= 4; } } else { // Resize not needed return NULL; } // Update statistics _resize_count++; // Update max cache size _entry_cache->set_max_size(size * _max_cache_factor); // Allocate the new table. The new table will be populated by workers // calling unlink_or_oops_do() and finally installed by finish_resize(). return new StringDedupTable(size, _table->_hash_seed); } void StringDedupTable::finish_resize(StringDedupTable* resized_table) { assert(resized_table != NULL, "Invalid table"); resized_table->_entries = _table->_entries; // Free old table delete _table; // Install new table _table = resized_table; } void StringDedupTable::unlink_or_oops_do(StringDedupUnlinkOrOopsDoClosure* cl, uint worker_id) { // The table is divided into partitions to allow lock-less parallel processing by // multiple worker threads. A worker thread first claims a partition, which ensures // exclusive access to that part of the table, then continues to process it. To allow // shrinking of the table in parallel we also need to make sure that the same worker // thread processes all partitions where entries will hash to the same destination // partition. Since the table size is always a power of two and we always shrink by // dividing the table in half, we know that for a given partition there is only one // other partition whoes entries will hash to the same destination partition. That // other partition is always the sibling partition in the second half of the table. // For example, if the table is divided into 8 partitions, the sibling of partition 0 // is partition 4, the sibling of partition 1 is partition 5, etc. size_t table_half = _table->_size / 2; // Let each partition be one page worth of buckets size_t partition_size = MIN2(table_half, os::vm_page_size() / sizeof(StringDedupEntry*)); assert(table_half % partition_size == 0, "Invalid partition size"); // Number of entries removed during the scan uintx removed = 0; for (;;) { // Grab next partition to scan size_t partition_begin = claim_table_partition(partition_size); size_t partition_end = partition_begin + partition_size; if (partition_begin >= table_half) { // End of table break; } // Scan the partition followed by the sibling partition in the second half of the table removed += unlink_or_oops_do(cl, partition_begin, partition_end, worker_id); removed += unlink_or_oops_do(cl, table_half + partition_begin, table_half + partition_end, worker_id); } // Delayed update to avoid contention on the table lock if (removed > 0) { assert_locked_or_safepoint_weak(StringDedupTable_lock); Atomic::sub(&_table->_entries, removed); Atomic::add(&_entries_removed, removed); } } uintx StringDedupTable::unlink_or_oops_do(StringDedupUnlinkOrOopsDoClosure* cl, size_t partition_begin, size_t partition_end, uint worker_id) { uintx removed = 0; for (size_t bucket = partition_begin; bucket < partition_end; bucket++) { StringDedupEntry** entry = _table->bucket(bucket); while (*entry != NULL) { oop* p = (oop*)(*entry)->obj_addr(); if (cl->is_alive(*p)) { cl->keep_alive(p); if (is_resizing()) { // We are resizing the table, transfer entry to the new table _table->transfer(entry, _resized_table); } else { if (is_rehashing()) { // We are rehashing the table, rehash the entry but keep it // in the table. We can't transfer entries into the new table // at this point since we don't have exclusive access to all // destination partitions. finish_rehash() will do a single // threaded transfer of all entries. typeArrayOop value = (typeArrayOop)*p; bool latin1 = (*entry)->latin1(); unsigned int hash = hash_code(value, latin1); (*entry)->set_hash(hash); } // Move to next entry entry = (*entry)->next_addr(); } } else { // Not alive, remove entry from table _table->remove(entry, worker_id); removed++; } } } return removed; } void StringDedupTable::gc_prologue(bool resize_and_rehash_table) { assert(!is_resizing() && !is_rehashing(), "Already in progress?"); _claimed_index = 0; if (resize_and_rehash_table) { // If both resize and rehash is needed, only do resize. Rehash of // the table will eventually happen if the situation persists. _resized_table = StringDedupTable::prepare_resize(); if (!is_resizing()) { _rehashed_table = StringDedupTable::prepare_rehash(); } } } void StringDedupTable::gc_epilogue() { assert(!is_resizing() || !is_rehashing(), "Can not both resize and rehash"); assert(_claimed_index >= _table->_size / 2 || _claimed_index == 0, "All or nothing"); if (is_resizing()) { StringDedupTable::finish_resize(_resized_table); _resized_table = NULL; } else if (is_rehashing()) { StringDedupTable::finish_rehash(_rehashed_table); _rehashed_table = NULL; } } StringDedupTable* StringDedupTable::prepare_rehash() { if (!_table->_rehash_needed && !StringDeduplicationRehashALot) { // Rehash not needed return NULL; } // Update statistics _rehash_count++; // Compute new hash seed _table->_hash_seed = AltHashing::compute_seed(); // Allocate the new table, same size and hash seed return new StringDedupTable(_table->_size, _table->_hash_seed); } void StringDedupTable::finish_rehash(StringDedupTable* rehashed_table) { assert(rehashed_table != NULL, "Invalid table"); // Move all newly rehashed entries into the correct buckets in the new table for (size_t bucket = 0; bucket < _table->_size; bucket++) { StringDedupEntry** entry = _table->bucket(bucket); while (*entry != NULL) { _table->transfer(entry, rehashed_table); } } rehashed_table->_entries = _table->_entries; // Free old table delete _table; // Install new table _table = rehashed_table; } size_t StringDedupTable::claim_table_partition(size_t partition_size) { return Atomic::add(&_claimed_index, partition_size) - partition_size; } void StringDedupTable::verify() { for (size_t bucket = 0; bucket < _table->_size; bucket++) { // Verify entries StringDedupEntry** entry = _table->bucket(bucket); while (*entry != NULL) { typeArrayOop value = (*entry)->obj(); guarantee(value != NULL, "Object must not be NULL"); guarantee(Universe::heap()->is_in(value), "Object must be on the heap"); guarantee(!value->is_forwarded(), "Object must not be forwarded"); guarantee(value->is_typeArray(), "Object must be a typeArrayOop"); bool latin1 = (*entry)->latin1(); unsigned int hash = hash_code(value, latin1); guarantee((*entry)->hash() == hash, "Table entry has inorrect hash"); guarantee(_table->hash_to_index(hash) == bucket, "Table entry has incorrect index"); entry = (*entry)->next_addr(); } // Verify that we do not have entries with identical oops or identical arrays. // We only need to compare entries in the same bucket. If the same oop or an // identical array has been inserted more than once into different/incorrect // buckets the verification step above will catch that. StringDedupEntry** entry1 = _table->bucket(bucket); while (*entry1 != NULL) { typeArrayOop value1 = (*entry1)->obj(); bool latin1_1 = (*entry1)->latin1(); StringDedupEntry** entry2 = (*entry1)->next_addr(); while (*entry2 != NULL) { typeArrayOop value2 = (*entry2)->obj(); bool latin1_2 = (*entry2)->latin1(); guarantee(latin1_1 != latin1_2 || !java_lang_String::value_equals(value1, value2), "Table entries must not have identical arrays"); entry2 = (*entry2)->next_addr(); } entry1 = (*entry1)->next_addr(); } } } void StringDedupTable::clean_entry_cache() { _entry_cache->delete_overflowed(); } void StringDedupTable::print_statistics() { Log(gc, stringdedup) log; log.debug(" Table"); log.debug(" Memory Usage: " STRDEDUP_BYTES_FORMAT_NS, STRDEDUP_BYTES_PARAM(_table->_size * sizeof(StringDedupEntry*) + (_table->_entries + _entry_cache->size()) * sizeof(StringDedupEntry))); log.debug(" Size: " SIZE_FORMAT ", Min: " SIZE_FORMAT ", Max: " SIZE_FORMAT, _table->_size, _min_size, _max_size); log.debug(" Entries: " UINTX_FORMAT ", Load: " STRDEDUP_PERCENT_FORMAT_NS ", Cached: " UINTX_FORMAT ", Added: " UINTX_FORMAT ", Removed: " UINTX_FORMAT, _table->_entries, percent_of((size_t)_table->_entries, _table->_size), _entry_cache->size(), _entries_added, _entries_removed); log.debug(" Resize Count: " UINTX_FORMAT ", Shrink Threshold: " UINTX_FORMAT "(" STRDEDUP_PERCENT_FORMAT_NS "), Grow Threshold: " UINTX_FORMAT "(" STRDEDUP_PERCENT_FORMAT_NS ")", _resize_count, _table->_shrink_threshold, _shrink_load_factor * 100.0, _table->_grow_threshold, _grow_load_factor * 100.0); log.debug(" Rehash Count: " UINTX_FORMAT ", Rehash Threshold: " UINTX_FORMAT ", Hash Seed: 0x%x", _rehash_count, _rehash_threshold, _table->_hash_seed); log.debug(" Age Threshold: " UINTX_FORMAT, StringDeduplicationAgeThreshold); }