1 /*
   2  * Copyright (c) 2015, 2019, Red Hat, Inc. All rights reserved.
   3  *
   4  * This code is free software; you can redistribute it and/or modify it
   5  * under the terms of the GNU General Public License version 2 only, as
   6  * published by the Free Software Foundation.
   7  *
   8  * This code is distributed in the hope that it will be useful, but WITHOUT
   9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  11  * version 2 for more details (a copy is included in the LICENSE file that
  12  * accompanied this code).
  13  *
  14  * You should have received a copy of the GNU General Public License version
  15  * 2 along with this work; if not, write to the Free Software Foundation,
  16  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  17  *
  18  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  19  * or visit www.oracle.com if you need additional information or have any
  20  * questions.
  21  *
  22  */
  23 
  24 #ifndef SHARE_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP
  25 #define SHARE_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP
  26 
  27 #include "classfile/javaClasses.inline.hpp"
  28 #include "gc/shared/markBitMap.inline.hpp"
  29 #include "gc/shared/threadLocalAllocBuffer.inline.hpp"
  30 #include "gc/shared/suspendibleThreadSet.hpp"
  31 #include "gc/shenandoah/shenandoahAsserts.hpp"
  32 #include "gc/shenandoah/shenandoahBarrierSet.inline.hpp"
  33 #include "gc/shenandoah/shenandoahCollectionSet.inline.hpp"
  34 #include "gc/shenandoah/shenandoahForwarding.inline.hpp"
  35 #include "gc/shenandoah/shenandoahWorkGroup.hpp"
  36 #include "gc/shenandoah/shenandoahHeap.hpp"
  37 #include "gc/shenandoah/shenandoahHeapRegionSet.inline.hpp"
  38 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
  39 #include "gc/shenandoah/shenandoahControlThread.hpp"
  40 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  41 #include "gc/shenandoah/shenandoahThreadLocalData.hpp"
  42 #include "oops/compressedOops.inline.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "runtime/atomic.hpp"
  45 #include "runtime/prefetch.inline.hpp"
  46 #include "runtime/thread.hpp"
  47 #include "utilities/copy.hpp"
  48 #include "utilities/globalDefinitions.hpp"
  49 
  50 
  51 inline ShenandoahHeapRegion* ShenandoahRegionIterator::next() {
  52   size_t new_index = Atomic::add(&_index, (size_t) 1);
  53   // get_region() provides the bounds-check and returns NULL on OOB.
  54   return _heap->get_region(new_index - 1);
  55 }
  56 
  57 inline bool ShenandoahHeap::has_forwarded_objects() const {
  58   return _gc_state.is_set(HAS_FORWARDED);
  59 }
  60 
  61 inline WorkGang* ShenandoahHeap::workers() const {
  62   return _workers;
  63 }
  64 
  65 inline WorkGang* ShenandoahHeap::get_safepoint_workers() {
  66   return _safepoint_workers;
  67 }
  68 
  69 inline size_t ShenandoahHeap::heap_region_index_containing(const void* addr) const {
  70   uintptr_t region_start = ((uintptr_t) addr);
  71   uintptr_t index = (region_start - (uintptr_t) base()) >> ShenandoahHeapRegion::region_size_bytes_shift();
  72   assert(index < num_regions(), "Region index is in bounds: " PTR_FORMAT, p2i(addr));
  73   return index;
  74 }
  75 
  76 inline ShenandoahHeapRegion* const ShenandoahHeap::heap_region_containing(const void* addr) const {
  77   size_t index = heap_region_index_containing(addr);
  78   ShenandoahHeapRegion* const result = get_region(index);
  79   assert(addr >= result->bottom() && addr < result->end(), "Heap region contains the address: " PTR_FORMAT, p2i(addr));
  80   return result;
  81 }
  82 
  83 template <class T>
  84 inline oop ShenandoahHeap::update_with_forwarded_not_null(T* p, oop obj) {
  85   if (in_collection_set(obj)) {
  86     shenandoah_assert_forwarded_except(p, obj, is_full_gc_in_progress() || cancelled_gc() || is_degenerated_gc_in_progress());
  87     obj = ShenandoahBarrierSet::resolve_forwarded_not_null(obj);
  88     RawAccess<IS_NOT_NULL>::oop_store(p, obj);
  89   }
  90 #ifdef ASSERT
  91   else {
  92     shenandoah_assert_not_forwarded(p, obj);
  93   }
  94 #endif
  95   return obj;
  96 }
  97 
  98 template <class T>
  99 inline oop ShenandoahHeap::maybe_update_with_forwarded(T* p) {
 100   T o = RawAccess<>::oop_load(p);
 101   if (!CompressedOops::is_null(o)) {
 102     oop obj = CompressedOops::decode_not_null(o);
 103     return maybe_update_with_forwarded_not_null(p, obj);
 104   } else {
 105     return NULL;
 106   }
 107 }
 108 
 109 template <class T>
 110 inline oop ShenandoahHeap::evac_update_with_forwarded(T* p) {
 111   T o = RawAccess<>::oop_load(p);
 112   if (!CompressedOops::is_null(o)) {
 113     oop heap_oop = CompressedOops::decode_not_null(o);
 114     if (in_collection_set(heap_oop)) {
 115       oop forwarded_oop = ShenandoahBarrierSet::resolve_forwarded_not_null(heap_oop);
 116       if (forwarded_oop == heap_oop) {
 117         forwarded_oop = evacuate_object(heap_oop, Thread::current());
 118       }
 119       oop prev = cas_oop(forwarded_oop, p, heap_oop);
 120       if (prev == heap_oop) {
 121         return forwarded_oop;
 122       } else {
 123         return NULL;
 124       }
 125     }
 126     return heap_oop;
 127   } else {
 128     return NULL;
 129   }
 130 }
 131 
 132 inline oop ShenandoahHeap::cas_oop(oop n, oop* addr, oop c) {
 133   assert(is_aligned(addr, HeapWordSize), "Address should be aligned: " PTR_FORMAT, p2i(addr));
 134   return (oop) Atomic::cmpxchg(addr, c, n);
 135 }
 136 
 137 inline oop ShenandoahHeap::cas_oop(oop n, narrowOop* addr, narrowOop c) {
 138   assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr));
 139   narrowOop val = CompressedOops::encode(n);
 140   return CompressedOops::decode((narrowOop) Atomic::cmpxchg(addr, c, val));
 141 }
 142 
 143 inline oop ShenandoahHeap::cas_oop(oop n, narrowOop* addr, oop c) {
 144   assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr));
 145   narrowOop cmp = CompressedOops::encode(c);
 146   narrowOop val = CompressedOops::encode(n);
 147   return CompressedOops::decode((narrowOop) Atomic::cmpxchg(addr, cmp, val));
 148 }
 149 
 150 template <class T>
 151 inline oop ShenandoahHeap::maybe_update_with_forwarded_not_null(T* p, oop heap_oop) {
 152   shenandoah_assert_not_in_cset_loc_except(p, !is_in(p) || is_full_gc_in_progress() || is_degenerated_gc_in_progress());
 153   shenandoah_assert_correct(p, heap_oop);
 154 
 155   if (in_collection_set(heap_oop)) {
 156     oop forwarded_oop = ShenandoahBarrierSet::resolve_forwarded_not_null(heap_oop);
 157     if (forwarded_oop == heap_oop) {
 158       // E.g. during evacuation.
 159       return forwarded_oop;
 160     }
 161 
 162     shenandoah_assert_forwarded_except(p, heap_oop, is_full_gc_in_progress() || is_degenerated_gc_in_progress());
 163     shenandoah_assert_not_forwarded(p, forwarded_oop);
 164     shenandoah_assert_not_in_cset_except(p, forwarded_oop, cancelled_gc());
 165 
 166     // If this fails, another thread wrote to p before us, it will be logged in SATB and the
 167     // reference be updated later.
 168     oop witness = cas_oop(forwarded_oop, p, heap_oop);
 169 
 170     if (witness != heap_oop) {
 171       // CAS failed, someone had beat us to it. Normally, we would return the failure witness,
 172       // because that would be the proper write of to-space object, enforced by strong barriers.
 173       // However, there is a corner case with arraycopy. It can happen that a Java thread
 174       // beats us with an arraycopy, which first copies the array, which potentially contains
 175       // from-space refs, and only afterwards updates all from-space refs to to-space refs,
 176       // which leaves a short window where the new array elements can be from-space.
 177       // In this case, we can just resolve the result again. As we resolve, we need to consider
 178       // the contended write might have been NULL.
 179       oop result = witness;
 180       if (!CompressedOops::is_null(witness) && in_collection_set(witness)) {
 181         result = ShenandoahBarrierSet::resolve_forwarded(witness);
 182       }
 183       shenandoah_assert_not_forwarded_except(p, result, (result == NULL));
 184       shenandoah_assert_not_in_cset_except(p, result, (result == NULL) || cancelled_gc());
 185       return result;
 186     } else {
 187       // Success! We have updated with known to-space copy. We have already asserted it is sane.
 188       return forwarded_oop;
 189     }
 190   } else {
 191     shenandoah_assert_not_forwarded(p, heap_oop);
 192     return heap_oop;
 193   }
 194 }
 195 
 196 inline bool ShenandoahHeap::cancelled_gc() const {
 197   return _cancelled_gc.get() == CANCELLED;
 198 }
 199 
 200 inline bool ShenandoahHeap::check_cancelled_gc_and_yield(bool sts_active) {
 201   if (! (sts_active && ShenandoahSuspendibleWorkers)) {
 202     return cancelled_gc();
 203   }
 204 
 205   jbyte prev = _cancelled_gc.cmpxchg(NOT_CANCELLED, CANCELLABLE);
 206   if (prev == CANCELLABLE || prev == NOT_CANCELLED) {
 207     if (SuspendibleThreadSet::should_yield()) {
 208       SuspendibleThreadSet::yield();
 209     }
 210 
 211     // Back to CANCELLABLE. The thread that poked NOT_CANCELLED first gets
 212     // to restore to CANCELLABLE.
 213     if (prev == CANCELLABLE) {
 214       _cancelled_gc.set(CANCELLABLE);
 215     }
 216     return false;
 217   } else {
 218     return true;
 219   }
 220 }
 221 
 222 inline void ShenandoahHeap::clear_cancelled_gc() {
 223   _cancelled_gc.set(CANCELLABLE);
 224   _oom_evac_handler.clear();
 225 }
 226 
 227 inline HeapWord* ShenandoahHeap::allocate_from_gclab(Thread* thread, size_t size) {
 228   assert(UseTLAB, "TLABs should be enabled");
 229 
 230   PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
 231   if (gclab == NULL) {
 232     assert(!thread->is_Java_thread() && !thread->is_Worker_thread(),
 233            "Performance: thread should have GCLAB: %s", thread->name());
 234     // No GCLABs in this thread, fallback to shared allocation
 235     return NULL;
 236   }
 237   HeapWord* obj = gclab->allocate(size);
 238   if (obj != NULL) {
 239     return obj;
 240   }
 241   // Otherwise...
 242   return allocate_from_gclab_slow(thread, size);
 243 }
 244 
 245 inline oop ShenandoahHeap::evacuate_object(oop p, Thread* thread) {
 246   if (ShenandoahThreadLocalData::is_oom_during_evac(Thread::current())) {
 247     // This thread went through the OOM during evac protocol and it is safe to return
 248     // the forward pointer. It must not attempt to evacuate any more.
 249     return ShenandoahBarrierSet::resolve_forwarded(p);
 250   }
 251 
 252   assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope");
 253 
 254   size_t size = p->size();
 255 
 256   assert(!heap_region_containing(p)->is_humongous(), "never evacuate humongous objects");
 257 
 258   bool alloc_from_gclab = true;
 259   HeapWord* copy = NULL;
 260 
 261 #ifdef ASSERT
 262   if (ShenandoahOOMDuringEvacALot &&
 263       (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call
 264         copy = NULL;
 265   } else {
 266 #endif
 267     if (UseTLAB) {
 268       copy = allocate_from_gclab(thread, size);
 269     }
 270     if (copy == NULL) {
 271       ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size);
 272       copy = allocate_memory(req);
 273       alloc_from_gclab = false;
 274     }
 275 #ifdef ASSERT
 276   }
 277 #endif
 278 
 279   if (copy == NULL) {
 280     control_thread()->handle_alloc_failure_evac(size);
 281 
 282     _oom_evac_handler.handle_out_of_memory_during_evacuation();
 283 
 284     return ShenandoahBarrierSet::resolve_forwarded(p);
 285   }
 286 
 287   // Copy the object:
 288   Copy::aligned_disjoint_words((HeapWord*) p, copy, size);
 289 
 290   // Try to install the new forwarding pointer.
 291   oop copy_val = oop(copy);
 292   oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val);
 293   if (result == copy_val) {
 294     // Successfully evacuated. Our copy is now the public one!
 295     shenandoah_assert_correct(NULL, copy_val);
 296     return copy_val;
 297   }  else {
 298     // Failed to evacuate. We need to deal with the object that is left behind. Since this
 299     // new allocation is certainly after TAMS, it will be considered live in the next cycle.
 300     // But if it happens to contain references to evacuated regions, those references would
 301     // not get updated for this stale copy during this cycle, and we will crash while scanning
 302     // it the next cycle.
 303     //
 304     // For GCLAB allocations, it is enough to rollback the allocation ptr. Either the next
 305     // object will overwrite this stale copy, or the filler object on LAB retirement will
 306     // do this. For non-GCLAB allocations, we have no way to retract the allocation, and
 307     // have to explicitly overwrite the copy with the filler object. With that overwrite,
 308     // we have to keep the fwdptr initialized and pointing to our (stale) copy.
 309     if (alloc_from_gclab) {
 310       ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size);
 311     } else {
 312       fill_with_object(copy, size);
 313       shenandoah_assert_correct(NULL, copy_val);
 314     }
 315     shenandoah_assert_correct(NULL, result);
 316     return result;
 317   }
 318 }
 319 
 320 template<bool RESOLVE>
 321 inline bool ShenandoahHeap::requires_marking(const void* entry) const {
 322   oop obj = oop(entry);
 323   if (RESOLVE && in_collection_set(obj)) {
 324     obj = ShenandoahBarrierSet::resolve_forwarded_not_null(obj);
 325   }
 326   return !_marking_context->is_marked(obj);
 327 }
 328 
 329 template <class T>
 330 inline bool ShenandoahHeap::in_collection_set(T p) const {
 331   HeapWord* obj = (HeapWord*) p;
 332   assert(collection_set() != NULL, "Sanity");
 333   assert(is_in(obj), "should be in heap");
 334 
 335   return collection_set()->is_in(obj);
 336 }
 337 
 338 inline bool ShenandoahHeap::is_stable() const {
 339   return _gc_state.is_clear();
 340 }
 341 
 342 inline bool ShenandoahHeap::is_idle() const {
 343   return _gc_state.is_unset(MARKING | EVACUATION | UPDATEREFS | TRAVERSAL);
 344 }
 345 
 346 inline bool ShenandoahHeap::is_concurrent_mark_in_progress() const {
 347   return _gc_state.is_set(MARKING);
 348 }
 349 
 350 inline bool ShenandoahHeap::is_concurrent_traversal_in_progress() const {
 351   return _gc_state.is_set(TRAVERSAL);
 352 }
 353 
 354 inline bool ShenandoahHeap::is_evacuation_in_progress() const {
 355   return _gc_state.is_set(EVACUATION);
 356 }
 357 
 358 inline bool ShenandoahHeap::is_gc_in_progress_mask(uint mask) const {
 359   return _gc_state.is_set(mask);
 360 }
 361 
 362 inline bool ShenandoahHeap::is_degenerated_gc_in_progress() const {
 363   return _degenerated_gc_in_progress.is_set();
 364 }
 365 
 366 inline bool ShenandoahHeap::is_full_gc_in_progress() const {
 367   return _full_gc_in_progress.is_set();
 368 }
 369 
 370 inline bool ShenandoahHeap::is_full_gc_move_in_progress() const {
 371   return _full_gc_move_in_progress.is_set();
 372 }
 373 
 374 inline bool ShenandoahHeap::is_update_refs_in_progress() const {
 375   return _gc_state.is_set(UPDATEREFS);
 376 }
 377 
 378 inline bool ShenandoahHeap::is_stw_gc_in_progress() const {
 379   return is_full_gc_in_progress() || is_degenerated_gc_in_progress();
 380 }
 381 
 382 inline bool ShenandoahHeap::is_concurrent_root_in_progress() const {
 383   return _concurrent_root_in_progress.is_set();
 384 }
 385 
 386 template<class T>
 387 inline void ShenandoahHeap::marked_object_iterate(ShenandoahHeapRegion* region, T* cl) {
 388   marked_object_iterate(region, cl, region->top());
 389 }
 390 
 391 template<class T>
 392 inline void ShenandoahHeap::marked_object_iterate(ShenandoahHeapRegion* region, T* cl, HeapWord* limit) {
 393   assert(! region->is_humongous_continuation(), "no humongous continuation regions here");
 394 
 395   ShenandoahMarkingContext* const ctx = complete_marking_context();
 396   assert(ctx->is_complete(), "sanity");
 397 
 398   MarkBitMap* mark_bit_map = ctx->mark_bit_map();
 399   HeapWord* tams = ctx->top_at_mark_start(region);
 400 
 401   size_t skip_bitmap_delta = 1;
 402   HeapWord* start = region->bottom();
 403   HeapWord* end = MIN2(tams, region->end());
 404 
 405   // Step 1. Scan below the TAMS based on bitmap data.
 406   HeapWord* limit_bitmap = MIN2(limit, tams);
 407 
 408   // Try to scan the initial candidate. If the candidate is above the TAMS, it would
 409   // fail the subsequent "< limit_bitmap" checks, and fall through to Step 2.
 410   HeapWord* cb = mark_bit_map->get_next_marked_addr(start, end);
 411 
 412   intx dist = ShenandoahMarkScanPrefetch;
 413   if (dist > 0) {
 414     // Batched scan that prefetches the oop data, anticipating the access to
 415     // either header, oop field, or forwarding pointer. Not that we cannot
 416     // touch anything in oop, while it still being prefetched to get enough
 417     // time for prefetch to work. This is why we try to scan the bitmap linearly,
 418     // disregarding the object size. However, since we know forwarding pointer
 419     // preceeds the object, we can skip over it. Once we cannot trust the bitmap,
 420     // there is no point for prefetching the oop contents, as oop->size() will
 421     // touch it prematurely.
 422 
 423     // No variable-length arrays in standard C++, have enough slots to fit
 424     // the prefetch distance.
 425     static const int SLOT_COUNT = 256;
 426     guarantee(dist <= SLOT_COUNT, "adjust slot count");
 427     HeapWord* slots[SLOT_COUNT];
 428 
 429     int avail;
 430     do {
 431       avail = 0;
 432       for (int c = 0; (c < dist) && (cb < limit_bitmap); c++) {
 433         Prefetch::read(cb, oopDesc::mark_offset_in_bytes());
 434         slots[avail++] = cb;
 435         cb += skip_bitmap_delta;
 436         if (cb < limit_bitmap) {
 437           cb = mark_bit_map->get_next_marked_addr(cb, limit_bitmap);
 438         }
 439       }
 440 
 441       for (int c = 0; c < avail; c++) {
 442         assert (slots[c] < tams,  "only objects below TAMS here: "  PTR_FORMAT " (" PTR_FORMAT ")", p2i(slots[c]), p2i(tams));
 443         assert (slots[c] < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(slots[c]), p2i(limit));
 444         oop obj = oop(slots[c]);
 445         assert(oopDesc::is_oop(obj), "sanity");
 446         assert(ctx->is_marked(obj), "object expected to be marked");
 447         cl->do_object(obj);
 448       }
 449     } while (avail > 0);
 450   } else {
 451     while (cb < limit_bitmap) {
 452       assert (cb < tams,  "only objects below TAMS here: "  PTR_FORMAT " (" PTR_FORMAT ")", p2i(cb), p2i(tams));
 453       assert (cb < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cb), p2i(limit));
 454       oop obj = oop(cb);
 455       assert(oopDesc::is_oop(obj), "sanity");
 456       assert(ctx->is_marked(obj), "object expected to be marked");
 457       cl->do_object(obj);
 458       cb += skip_bitmap_delta;
 459       if (cb < limit_bitmap) {
 460         cb = mark_bit_map->get_next_marked_addr(cb, limit_bitmap);
 461       }
 462     }
 463   }
 464 
 465   // Step 2. Accurate size-based traversal, happens past the TAMS.
 466   // This restarts the scan at TAMS, which makes sure we traverse all objects,
 467   // regardless of what happened at Step 1.
 468   HeapWord* cs = tams;
 469   while (cs < limit) {
 470     assert (cs >= tams, "only objects past TAMS here: "   PTR_FORMAT " (" PTR_FORMAT ")", p2i(cs), p2i(tams));
 471     assert (cs < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cs), p2i(limit));
 472     oop obj = oop(cs);
 473     assert(oopDesc::is_oop(obj), "sanity");
 474     assert(ctx->is_marked(obj), "object expected to be marked");
 475     int size = obj->size();
 476     cl->do_object(obj);
 477     cs += size;
 478   }
 479 }
 480 
 481 template <class T>
 482 class ShenandoahObjectToOopClosure : public ObjectClosure {
 483   T* _cl;
 484 public:
 485   ShenandoahObjectToOopClosure(T* cl) : _cl(cl) {}
 486 
 487   void do_object(oop obj) {
 488     obj->oop_iterate(_cl);
 489   }
 490 };
 491 
 492 template <class T>
 493 class ShenandoahObjectToOopBoundedClosure : public ObjectClosure {
 494   T* _cl;
 495   MemRegion _bounds;
 496 public:
 497   ShenandoahObjectToOopBoundedClosure(T* cl, HeapWord* bottom, HeapWord* top) :
 498     _cl(cl), _bounds(bottom, top) {}
 499 
 500   void do_object(oop obj) {
 501     obj->oop_iterate(_cl, _bounds);
 502   }
 503 };
 504 
 505 template<class T>
 506 inline void ShenandoahHeap::marked_object_oop_iterate(ShenandoahHeapRegion* region, T* cl, HeapWord* top) {
 507   if (region->is_humongous()) {
 508     HeapWord* bottom = region->bottom();
 509     if (top > bottom) {
 510       region = region->humongous_start_region();
 511       ShenandoahObjectToOopBoundedClosure<T> objs(cl, bottom, top);
 512       marked_object_iterate(region, &objs);
 513     }
 514   } else {
 515     ShenandoahObjectToOopClosure<T> objs(cl);
 516     marked_object_iterate(region, &objs, top);
 517   }
 518 }
 519 
 520 inline ShenandoahHeapRegion* const ShenandoahHeap::get_region(size_t region_idx) const {
 521   if (region_idx < _num_regions) {
 522     return _regions[region_idx];
 523   } else {
 524     return NULL;
 525   }
 526 }
 527 
 528 inline void ShenandoahHeap::mark_complete_marking_context() {
 529   _marking_context->mark_complete();
 530 }
 531 
 532 inline void ShenandoahHeap::mark_incomplete_marking_context() {
 533   _marking_context->mark_incomplete();
 534 }
 535 
 536 inline ShenandoahMarkingContext* ShenandoahHeap::complete_marking_context() const {
 537   assert (_marking_context->is_complete()," sanity");
 538   return _marking_context;
 539 }
 540 
 541 inline ShenandoahMarkingContext* ShenandoahHeap::marking_context() const {
 542   return _marking_context;
 543 }
 544 
 545 #endif // SHARE_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP