1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/arraycopynode.hpp"
  34 #include "opto/callGenerator.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "opto/cfgnode.hpp"
  37 #include "opto/convertnode.hpp"
  38 #include "opto/countbitsnode.hpp"
  39 #include "opto/intrinsicnode.hpp"
  40 #include "opto/idealKit.hpp"
  41 #include "opto/mathexactnode.hpp"
  42 #include "opto/movenode.hpp"
  43 #include "opto/mulnode.hpp"
  44 #include "opto/narrowptrnode.hpp"
  45 #include "opto/opaquenode.hpp"
  46 #include "opto/parse.hpp"
  47 #include "opto/runtime.hpp"
  48 #include "opto/subnode.hpp"
  49 #include "prims/nativeLookup.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "trace/traceMacros.hpp"
  52 
  53 class LibraryIntrinsic : public InlineCallGenerator {
  54   // Extend the set of intrinsics known to the runtime:
  55  public:
  56  private:
  57   bool             _is_virtual;
  58   bool             _does_virtual_dispatch;
  59   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  60   int8_t           _last_predicate; // Last generated predicate
  61   vmIntrinsics::ID _intrinsic_id;
  62 
  63  public:
  64   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  65     : InlineCallGenerator(m),
  66       _is_virtual(is_virtual),
  67       _does_virtual_dispatch(does_virtual_dispatch),
  68       _predicates_count((int8_t)predicates_count),
  69       _last_predicate((int8_t)-1),
  70       _intrinsic_id(id)
  71   {
  72   }
  73   virtual bool is_intrinsic() const { return true; }
  74   virtual bool is_virtual()   const { return _is_virtual; }
  75   virtual bool is_predicated() const { return _predicates_count > 0; }
  76   virtual int  predicates_count() const { return _predicates_count; }
  77   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  78   virtual JVMState* generate(JVMState* jvms);
  79   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  80   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  81 };
  82 
  83 
  84 // Local helper class for LibraryIntrinsic:
  85 class LibraryCallKit : public GraphKit {
  86  private:
  87   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  88   Node*             _result;        // the result node, if any
  89   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  90 
  91   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  92 
  93  public:
  94   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  95     : GraphKit(jvms),
  96       _intrinsic(intrinsic),
  97       _result(NULL)
  98   {
  99     // Check if this is a root compile.  In that case we don't have a caller.
 100     if (!jvms->has_method()) {
 101       _reexecute_sp = sp();
 102     } else {
 103       // Find out how many arguments the interpreter needs when deoptimizing
 104       // and save the stack pointer value so it can used by uncommon_trap.
 105       // We find the argument count by looking at the declared signature.
 106       bool ignored_will_link;
 107       ciSignature* declared_signature = NULL;
 108       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 109       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 110       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 111     }
 112   }
 113 
 114   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 115 
 116   ciMethod*         caller()    const    { return jvms()->method(); }
 117   int               bci()       const    { return jvms()->bci(); }
 118   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 119   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 120   ciMethod*         callee()    const    { return _intrinsic->method(); }
 121 
 122   bool  try_to_inline(int predicate);
 123   Node* try_to_predicate(int predicate);
 124 
 125   void push_result() {
 126     // Push the result onto the stack.
 127     if (!stopped() && result() != NULL) {
 128       BasicType bt = result()->bottom_type()->basic_type();
 129       push_node(bt, result());
 130     }
 131   }
 132 
 133  private:
 134   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 135     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 136   }
 137 
 138   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 139   void  set_result(RegionNode* region, PhiNode* value);
 140   Node*     result() { return _result; }
 141 
 142   virtual int reexecute_sp() { return _reexecute_sp; }
 143 
 144   // Helper functions to inline natives
 145   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 146   Node* generate_slow_guard(Node* test, RegionNode* region);
 147   Node* generate_fair_guard(Node* test, RegionNode* region);
 148   Node* generate_negative_guard(Node* index, RegionNode* region,
 149                                 // resulting CastII of index:
 150                                 Node* *pos_index = NULL);
 151   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 152                              Node* array_length,
 153                              RegionNode* region);
 154   Node* generate_current_thread(Node* &tls_output);
 155   Node* load_mirror_from_klass(Node* klass);
 156   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 157                                       RegionNode* region, int null_path,
 158                                       int offset);
 159   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 160                                RegionNode* region, int null_path) {
 161     int offset = java_lang_Class::klass_offset_in_bytes();
 162     return load_klass_from_mirror_common(mirror, never_see_null,
 163                                          region, null_path,
 164                                          offset);
 165   }
 166   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 167                                      RegionNode* region, int null_path) {
 168     int offset = java_lang_Class::array_klass_offset_in_bytes();
 169     return load_klass_from_mirror_common(mirror, never_see_null,
 170                                          region, null_path,
 171                                          offset);
 172   }
 173   Node* generate_access_flags_guard(Node* kls,
 174                                     int modifier_mask, int modifier_bits,
 175                                     RegionNode* region);
 176   Node* generate_interface_guard(Node* kls, RegionNode* region);
 177   Node* generate_array_guard(Node* kls, RegionNode* region) {
 178     return generate_array_guard_common(kls, region, false, false);
 179   }
 180   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 181     return generate_array_guard_common(kls, region, false, true);
 182   }
 183   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 184     return generate_array_guard_common(kls, region, true, false);
 185   }
 186   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 187     return generate_array_guard_common(kls, region, true, true);
 188   }
 189   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 190                                     bool obj_array, bool not_array);
 191   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 192   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 193                                      bool is_virtual = false, bool is_static = false);
 194   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 195     return generate_method_call(method_id, false, true);
 196   }
 197   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 198     return generate_method_call(method_id, true, false);
 199   }
 200   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 201 
 202   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 203   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 204   bool inline_string_compareTo();
 205   bool inline_string_indexOf();
 206   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 207   bool inline_string_equals();
 208   Node* round_double_node(Node* n);
 209   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 210   bool inline_math_native(vmIntrinsics::ID id);
 211   bool inline_trig(vmIntrinsics::ID id);
 212   bool inline_math(vmIntrinsics::ID id);
 213   template <typename OverflowOp>
 214   bool inline_math_overflow(Node* arg1, Node* arg2);
 215   void inline_math_mathExact(Node* math, Node* test);
 216   bool inline_math_addExactI(bool is_increment);
 217   bool inline_math_addExactL(bool is_increment);
 218   bool inline_math_multiplyExactI();
 219   bool inline_math_multiplyExactL();
 220   bool inline_math_negateExactI();
 221   bool inline_math_negateExactL();
 222   bool inline_math_subtractExactI(bool is_decrement);
 223   bool inline_math_subtractExactL(bool is_decrement);
 224   bool inline_exp();
 225   bool inline_pow();
 226   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 227   bool inline_min_max(vmIntrinsics::ID id);
 228   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 229   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 230   int classify_unsafe_addr(Node* &base, Node* &offset);
 231   Node* make_unsafe_address(Node* base, Node* offset);
 232   // Helper for inline_unsafe_access.
 233   // Generates the guards that check whether the result of
 234   // Unsafe.getObject should be recorded in an SATB log buffer.
 235   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 236   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 237   static bool klass_needs_init_guard(Node* kls);
 238   bool inline_unsafe_allocate();
 239   bool inline_unsafe_copyMemory();
 240   bool inline_native_currentThread();
 241 #ifdef TRACE_HAVE_INTRINSICS
 242   bool inline_native_classID();
 243   bool inline_native_threadID();
 244 #endif
 245   bool inline_native_time_funcs(address method, const char* funcName);
 246   bool inline_native_isInterrupted();
 247   bool inline_native_Class_query(vmIntrinsics::ID id);
 248   bool inline_native_subtype_check();
 249 
 250   bool inline_native_newArray();
 251   bool inline_native_getLength();
 252   bool inline_array_copyOf(bool is_copyOfRange);
 253   bool inline_array_equals();
 254   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 255   bool inline_native_clone(bool is_virtual);
 256   bool inline_native_Reflection_getCallerClass();
 257   // Helper function for inlining native object hash method
 258   bool inline_native_hashcode(bool is_virtual, bool is_static);
 259   bool inline_native_getClass();
 260 
 261   // Helper functions for inlining arraycopy
 262   bool inline_arraycopy();
 263   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 264                                                 RegionNode* slow_region);
 265   JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
 266   void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp);
 267 
 268   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 269   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 270   bool inline_unsafe_ordered_store(BasicType type);
 271   bool inline_unsafe_fence(vmIntrinsics::ID id);
 272   bool inline_fp_conversions(vmIntrinsics::ID id);
 273   bool inline_number_methods(vmIntrinsics::ID id);
 274   bool inline_reference_get();
 275   bool inline_Class_cast();
 276   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 277   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 278   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 279   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 280   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 281   bool inline_ghash_processBlocks();
 282   bool inline_sha_implCompress(vmIntrinsics::ID id);
 283   bool inline_digestBase_implCompressMB(int predicate);
 284   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 285                                  bool long_state, address stubAddr, const char *stubName,
 286                                  Node* src_start, Node* ofs, Node* limit);
 287   Node* get_state_from_sha_object(Node *sha_object);
 288   Node* get_state_from_sha5_object(Node *sha_object);
 289   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 290   bool inline_encodeISOArray();
 291   bool inline_updateCRC32();
 292   bool inline_updateBytesCRC32();
 293   bool inline_updateByteBufferCRC32();
 294   Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
 295   bool inline_updateBytesCRC32C();
 296   bool inline_updateDirectByteBufferCRC32C();
 297   bool inline_multiplyToLen();
 298   bool inline_squareToLen();
 299   bool inline_mulAdd();
 300   bool inline_montgomeryMultiply();
 301   bool inline_montgomerySquare();
 302 
 303   bool inline_profileBoolean();
 304   bool inline_isCompileConstant();
 305 };
 306 
 307 
 308 //---------------------------make_vm_intrinsic----------------------------
 309 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 310   vmIntrinsics::ID id = m->intrinsic_id();
 311   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 312 
 313   ccstr disable_intr = NULL;
 314 
 315   if ((DisableIntrinsic[0] != '\0'
 316        && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) ||
 317       (method_has_option_value("DisableIntrinsic", disable_intr)
 318        && strstr(disable_intr, vmIntrinsics::name_at(id)) != NULL)) {
 319     // disabled by a user request on the command line:
 320     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 321     return NULL;
 322   }
 323 
 324   if (!m->is_loaded()) {
 325     // do not attempt to inline unloaded methods
 326     return NULL;
 327   }
 328 
 329   // Only a few intrinsics implement a virtual dispatch.
 330   // They are expensive calls which are also frequently overridden.
 331   if (is_virtual) {
 332     switch (id) {
 333     case vmIntrinsics::_hashCode:
 334     case vmIntrinsics::_clone:
 335       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 336       break;
 337     default:
 338       return NULL;
 339     }
 340   }
 341 
 342   // -XX:-InlineNatives disables nearly all intrinsics:
 343   if (!InlineNatives) {
 344     switch (id) {
 345     case vmIntrinsics::_indexOf:
 346     case vmIntrinsics::_compareTo:
 347     case vmIntrinsics::_equals:
 348     case vmIntrinsics::_equalsC:
 349     case vmIntrinsics::_getAndAddInt:
 350     case vmIntrinsics::_getAndAddLong:
 351     case vmIntrinsics::_getAndSetInt:
 352     case vmIntrinsics::_getAndSetLong:
 353     case vmIntrinsics::_getAndSetObject:
 354     case vmIntrinsics::_loadFence:
 355     case vmIntrinsics::_storeFence:
 356     case vmIntrinsics::_fullFence:
 357       break;  // InlineNatives does not control String.compareTo
 358     case vmIntrinsics::_Reference_get:
 359       break;  // InlineNatives does not control Reference.get
 360     default:
 361       return NULL;
 362     }
 363   }
 364 
 365   int predicates = 0;
 366   bool does_virtual_dispatch = false;
 367 
 368   switch (id) {
 369   case vmIntrinsics::_compareTo:
 370     if (!SpecialStringCompareTo)  return NULL;
 371     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 372     break;
 373   case vmIntrinsics::_indexOf:
 374     if (!SpecialStringIndexOf)  return NULL;
 375     break;
 376   case vmIntrinsics::_equals:
 377     if (!SpecialStringEquals)  return NULL;
 378     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 379     break;
 380   case vmIntrinsics::_equalsC:
 381     if (!SpecialArraysEquals)  return NULL;
 382     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 383     break;
 384   case vmIntrinsics::_arraycopy:
 385     if (!InlineArrayCopy)  return NULL;
 386     break;
 387   case vmIntrinsics::_copyMemory:
 388     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 389     if (!InlineArrayCopy)  return NULL;
 390     break;
 391   case vmIntrinsics::_hashCode:
 392     if (!InlineObjectHash)  return NULL;
 393     does_virtual_dispatch = true;
 394     break;
 395   case vmIntrinsics::_clone:
 396     does_virtual_dispatch = true;
 397   case vmIntrinsics::_copyOf:
 398   case vmIntrinsics::_copyOfRange:
 399     if (!InlineObjectCopy)  return NULL;
 400     // These also use the arraycopy intrinsic mechanism:
 401     if (!InlineArrayCopy)  return NULL;
 402     break;
 403   case vmIntrinsics::_encodeISOArray:
 404     if (!SpecialEncodeISOArray)  return NULL;
 405     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 406     break;
 407   case vmIntrinsics::_checkIndex:
 408     // We do not intrinsify this.  The optimizer does fine with it.
 409     return NULL;
 410 
 411   case vmIntrinsics::_getCallerClass:
 412     if (!InlineReflectionGetCallerClass)  return NULL;
 413     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 414     break;
 415 
 416   case vmIntrinsics::_bitCount_i:
 417     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 418     break;
 419 
 420   case vmIntrinsics::_bitCount_l:
 421     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 422     break;
 423 
 424   case vmIntrinsics::_numberOfLeadingZeros_i:
 425     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 426     break;
 427 
 428   case vmIntrinsics::_numberOfLeadingZeros_l:
 429     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 430     break;
 431 
 432   case vmIntrinsics::_numberOfTrailingZeros_i:
 433     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 434     break;
 435 
 436   case vmIntrinsics::_numberOfTrailingZeros_l:
 437     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 438     break;
 439 
 440   case vmIntrinsics::_reverseBytes_c:
 441     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 442     break;
 443   case vmIntrinsics::_reverseBytes_s:
 444     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 445     break;
 446   case vmIntrinsics::_reverseBytes_i:
 447     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 448     break;
 449   case vmIntrinsics::_reverseBytes_l:
 450     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 451     break;
 452 
 453   case vmIntrinsics::_Reference_get:
 454     // Use the intrinsic version of Reference.get() so that the value in
 455     // the referent field can be registered by the G1 pre-barrier code.
 456     // Also add memory barrier to prevent commoning reads from this field
 457     // across safepoint since GC can change it value.
 458     break;
 459 
 460   case vmIntrinsics::_compareAndSwapObject:
 461 #ifdef _LP64
 462     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 463 #endif
 464     break;
 465 
 466   case vmIntrinsics::_compareAndSwapLong:
 467     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 468     break;
 469 
 470   case vmIntrinsics::_getAndAddInt:
 471     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 472     break;
 473 
 474   case vmIntrinsics::_getAndAddLong:
 475     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 476     break;
 477 
 478   case vmIntrinsics::_getAndSetInt:
 479     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 480     break;
 481 
 482   case vmIntrinsics::_getAndSetLong:
 483     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 484     break;
 485 
 486   case vmIntrinsics::_getAndSetObject:
 487 #ifdef _LP64
 488     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 489     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 490     break;
 491 #else
 492     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 493     break;
 494 #endif
 495 
 496   case vmIntrinsics::_aescrypt_encryptBlock:
 497   case vmIntrinsics::_aescrypt_decryptBlock:
 498     if (!UseAESIntrinsics) return NULL;
 499     break;
 500 
 501   case vmIntrinsics::_multiplyToLen:
 502     if (!UseMultiplyToLenIntrinsic) return NULL;
 503     break;
 504 
 505   case vmIntrinsics::_squareToLen:
 506     if (!UseSquareToLenIntrinsic) return NULL;
 507     break;
 508 
 509   case vmIntrinsics::_mulAdd:
 510     if (!UseMulAddIntrinsic) return NULL;
 511     break;
 512 
 513   case vmIntrinsics::_montgomeryMultiply:
 514      if (!UseMontgomeryMultiplyIntrinsic) return NULL;
 515     break;
 516   case vmIntrinsics::_montgomerySquare:
 517      if (!UseMontgomerySquareIntrinsic) return NULL;
 518     break;
 519 
 520   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 521   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 522     if (!UseAESIntrinsics) return NULL;
 523     // these two require the predicated logic
 524     predicates = 1;
 525     break;
 526 
 527   case vmIntrinsics::_sha_implCompress:
 528     if (!UseSHA1Intrinsics) return NULL;
 529     break;
 530 
 531   case vmIntrinsics::_sha2_implCompress:
 532     if (!UseSHA256Intrinsics) return NULL;
 533     break;
 534 
 535   case vmIntrinsics::_sha5_implCompress:
 536     if (!UseSHA512Intrinsics) return NULL;
 537     break;
 538 
 539   case vmIntrinsics::_digestBase_implCompressMB:
 540     if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) return NULL;
 541     predicates = 3;
 542     break;
 543 
 544   case vmIntrinsics::_ghash_processBlocks:
 545     if (!UseGHASHIntrinsics) return NULL;
 546     break;
 547 
 548   case vmIntrinsics::_updateCRC32:
 549   case vmIntrinsics::_updateBytesCRC32:
 550   case vmIntrinsics::_updateByteBufferCRC32:
 551     if (!UseCRC32Intrinsics) return NULL;
 552     break;
 553 
 554   case vmIntrinsics::_updateBytesCRC32C:
 555   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 556     if (!UseCRC32CIntrinsics) return NULL;
 557     break;
 558 
 559   case vmIntrinsics::_incrementExactI:
 560   case vmIntrinsics::_addExactI:
 561     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
 562     break;
 563   case vmIntrinsics::_incrementExactL:
 564   case vmIntrinsics::_addExactL:
 565     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
 566     break;
 567   case vmIntrinsics::_decrementExactI:
 568   case vmIntrinsics::_subtractExactI:
 569     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 570     break;
 571   case vmIntrinsics::_decrementExactL:
 572   case vmIntrinsics::_subtractExactL:
 573     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 574     break;
 575   case vmIntrinsics::_negateExactI:
 576     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 577     break;
 578   case vmIntrinsics::_negateExactL:
 579     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 580     break;
 581   case vmIntrinsics::_multiplyExactI:
 582     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
 583     break;
 584   case vmIntrinsics::_multiplyExactL:
 585     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
 586     break;
 587 
 588   case vmIntrinsics::_getShortUnaligned:
 589   case vmIntrinsics::_getCharUnaligned:
 590   case vmIntrinsics::_getIntUnaligned:
 591   case vmIntrinsics::_getLongUnaligned:
 592   case vmIntrinsics::_putShortUnaligned:
 593   case vmIntrinsics::_putCharUnaligned:
 594   case vmIntrinsics::_putIntUnaligned:
 595   case vmIntrinsics::_putLongUnaligned:
 596     if (!UseUnalignedAccesses) return NULL;
 597     break;
 598 
 599  default:
 600     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 601     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 602     break;
 603   }
 604 
 605   // -XX:-InlineClassNatives disables natives from the Class class.
 606   // The flag applies to all reflective calls, notably Array.newArray
 607   // (visible to Java programmers as Array.newInstance).
 608   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 609       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 610     if (!InlineClassNatives)  return NULL;
 611   }
 612 
 613   // -XX:-InlineThreadNatives disables natives from the Thread class.
 614   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 615     if (!InlineThreadNatives)  return NULL;
 616   }
 617 
 618   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 619   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 620       m->holder()->name() == ciSymbol::java_lang_Float() ||
 621       m->holder()->name() == ciSymbol::java_lang_Double()) {
 622     if (!InlineMathNatives)  return NULL;
 623   }
 624 
 625   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 626   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 627     if (!InlineUnsafeOps)  return NULL;
 628   }
 629 
 630   return new LibraryIntrinsic(m, is_virtual, predicates, does_virtual_dispatch, (vmIntrinsics::ID) id);
 631 }
 632 
 633 //----------------------register_library_intrinsics-----------------------
 634 // Initialize this file's data structures, for each Compile instance.
 635 void Compile::register_library_intrinsics() {
 636   // Nothing to do here.
 637 }
 638 
 639 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 640   LibraryCallKit kit(jvms, this);
 641   Compile* C = kit.C;
 642   int nodes = C->unique();
 643 #ifndef PRODUCT
 644   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 645     char buf[1000];
 646     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 647     tty->print_cr("Intrinsic %s", str);
 648   }
 649 #endif
 650   ciMethod* callee = kit.callee();
 651   const int bci    = kit.bci();
 652 
 653   // Try to inline the intrinsic.
 654   if (kit.try_to_inline(_last_predicate)) {
 655     if (C->print_intrinsics() || C->print_inlining()) {
 656       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 657     }
 658     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 659     if (C->log()) {
 660       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 661                      vmIntrinsics::name_at(intrinsic_id()),
 662                      (is_virtual() ? " virtual='1'" : ""),
 663                      C->unique() - nodes);
 664     }
 665     // Push the result from the inlined method onto the stack.
 666     kit.push_result();
 667     C->print_inlining_update(this);
 668     return kit.transfer_exceptions_into_jvms();
 669   }
 670 
 671   // The intrinsic bailed out
 672   if (C->print_intrinsics() || C->print_inlining()) {
 673     if (jvms->has_method()) {
 674       // Not a root compile.
 675       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 676       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 677     } else {
 678       // Root compile
 679       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 680                vmIntrinsics::name_at(intrinsic_id()),
 681                (is_virtual() ? " (virtual)" : ""), bci);
 682     }
 683   }
 684   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 685   C->print_inlining_update(this);
 686   return NULL;
 687 }
 688 
 689 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 690   LibraryCallKit kit(jvms, this);
 691   Compile* C = kit.C;
 692   int nodes = C->unique();
 693   _last_predicate = predicate;
 694 #ifndef PRODUCT
 695   assert(is_predicated() && predicate < predicates_count(), "sanity");
 696   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 697     char buf[1000];
 698     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 699     tty->print_cr("Predicate for intrinsic %s", str);
 700   }
 701 #endif
 702   ciMethod* callee = kit.callee();
 703   const int bci    = kit.bci();
 704 
 705   Node* slow_ctl = kit.try_to_predicate(predicate);
 706   if (!kit.failing()) {
 707     if (C->print_intrinsics() || C->print_inlining()) {
 708       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 709     }
 710     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 711     if (C->log()) {
 712       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 713                      vmIntrinsics::name_at(intrinsic_id()),
 714                      (is_virtual() ? " virtual='1'" : ""),
 715                      C->unique() - nodes);
 716     }
 717     return slow_ctl; // Could be NULL if the check folds.
 718   }
 719 
 720   // The intrinsic bailed out
 721   if (C->print_intrinsics() || C->print_inlining()) {
 722     if (jvms->has_method()) {
 723       // Not a root compile.
 724       const char* msg = "failed to generate predicate for intrinsic";
 725       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 726     } else {
 727       // Root compile
 728       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 729                                         vmIntrinsics::name_at(intrinsic_id()),
 730                                         (is_virtual() ? " (virtual)" : ""), bci);
 731     }
 732   }
 733   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 734   return NULL;
 735 }
 736 
 737 bool LibraryCallKit::try_to_inline(int predicate) {
 738   // Handle symbolic names for otherwise undistinguished boolean switches:
 739   const bool is_store       = true;
 740   const bool is_native_ptr  = true;
 741   const bool is_static      = true;
 742   const bool is_volatile    = true;
 743 
 744   if (!jvms()->has_method()) {
 745     // Root JVMState has a null method.
 746     assert(map()->memory()->Opcode() == Op_Parm, "");
 747     // Insert the memory aliasing node
 748     set_all_memory(reset_memory());
 749   }
 750   assert(merged_memory(), "");
 751 
 752 
 753   switch (intrinsic_id()) {
 754   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 755   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 756   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 757 
 758   case vmIntrinsics::_dsin:
 759   case vmIntrinsics::_dcos:
 760   case vmIntrinsics::_dtan:
 761   case vmIntrinsics::_dabs:
 762   case vmIntrinsics::_datan2:
 763   case vmIntrinsics::_dsqrt:
 764   case vmIntrinsics::_dexp:
 765   case vmIntrinsics::_dlog:
 766   case vmIntrinsics::_dlog10:
 767   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 768 
 769   case vmIntrinsics::_min:
 770   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 771 
 772   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 773   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 774   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 775   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 776   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 777   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 778   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 779   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 780   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 781   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 782   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 783   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 784 
 785   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 786 
 787   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 788   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 789   case vmIntrinsics::_equals:                   return inline_string_equals();
 790 
 791   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 792   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 793   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 794   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 795   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 796   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 797   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 798   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 799   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 800 
 801   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 802   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 803   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 804   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 805   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 806   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 807   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 808   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 809   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 810 
 811   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 812   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 813   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 814   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 815   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 816   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 817   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 818   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 819 
 820   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 821   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 822   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 823   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 824   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 825   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 826   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 827   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 828 
 829   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 830   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 831   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 832   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 833   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 834   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 835   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 836   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 837   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 838 
 839   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 840   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 841   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 842   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 843   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 844   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 845   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 846   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 847   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 848 
 849   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 850   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 851   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 852   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 853 
 854   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 855   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 856   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 857   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 858 
 859   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 860   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 861   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 862 
 863   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 864   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 865   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 866 
 867   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 868   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 869   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 870   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 871   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 872 
 873   case vmIntrinsics::_loadFence:
 874   case vmIntrinsics::_storeFence:
 875   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 876 
 877   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 878   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 879 
 880 #ifdef TRACE_HAVE_INTRINSICS
 881   case vmIntrinsics::_classID:                  return inline_native_classID();
 882   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 883   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 884 #endif
 885   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 886   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 887   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 888   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 889   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 890   case vmIntrinsics::_getLength:                return inline_native_getLength();
 891   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 892   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 893   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 894   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 895 
 896   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 897 
 898   case vmIntrinsics::_isInstance:
 899   case vmIntrinsics::_getModifiers:
 900   case vmIntrinsics::_isInterface:
 901   case vmIntrinsics::_isArray:
 902   case vmIntrinsics::_isPrimitive:
 903   case vmIntrinsics::_getSuperclass:
 904   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 905 
 906   case vmIntrinsics::_floatToRawIntBits:
 907   case vmIntrinsics::_floatToIntBits:
 908   case vmIntrinsics::_intBitsToFloat:
 909   case vmIntrinsics::_doubleToRawLongBits:
 910   case vmIntrinsics::_doubleToLongBits:
 911   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 912 
 913   case vmIntrinsics::_numberOfLeadingZeros_i:
 914   case vmIntrinsics::_numberOfLeadingZeros_l:
 915   case vmIntrinsics::_numberOfTrailingZeros_i:
 916   case vmIntrinsics::_numberOfTrailingZeros_l:
 917   case vmIntrinsics::_bitCount_i:
 918   case vmIntrinsics::_bitCount_l:
 919   case vmIntrinsics::_reverseBytes_i:
 920   case vmIntrinsics::_reverseBytes_l:
 921   case vmIntrinsics::_reverseBytes_s:
 922   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 923 
 924   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 925 
 926   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 927 
 928   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 929 
 930   case vmIntrinsics::_aescrypt_encryptBlock:
 931   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 932 
 933   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 934   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 935     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 936 
 937   case vmIntrinsics::_sha_implCompress:
 938   case vmIntrinsics::_sha2_implCompress:
 939   case vmIntrinsics::_sha5_implCompress:
 940     return inline_sha_implCompress(intrinsic_id());
 941 
 942   case vmIntrinsics::_digestBase_implCompressMB:
 943     return inline_digestBase_implCompressMB(predicate);
 944 
 945   case vmIntrinsics::_multiplyToLen:
 946     return inline_multiplyToLen();
 947 
 948   case vmIntrinsics::_squareToLen:
 949     return inline_squareToLen();
 950 
 951   case vmIntrinsics::_mulAdd:
 952     return inline_mulAdd();
 953 
 954   case vmIntrinsics::_montgomeryMultiply:
 955     return inline_montgomeryMultiply();
 956   case vmIntrinsics::_montgomerySquare:
 957     return inline_montgomerySquare();
 958 
 959   case vmIntrinsics::_ghash_processBlocks:
 960     return inline_ghash_processBlocks();
 961 
 962   case vmIntrinsics::_encodeISOArray:
 963     return inline_encodeISOArray();
 964 
 965   case vmIntrinsics::_updateCRC32:
 966     return inline_updateCRC32();
 967   case vmIntrinsics::_updateBytesCRC32:
 968     return inline_updateBytesCRC32();
 969   case vmIntrinsics::_updateByteBufferCRC32:
 970     return inline_updateByteBufferCRC32();
 971 
 972   case vmIntrinsics::_updateBytesCRC32C:
 973     return inline_updateBytesCRC32C();
 974   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 975     return inline_updateDirectByteBufferCRC32C();
 976 
 977   case vmIntrinsics::_profileBoolean:
 978     return inline_profileBoolean();
 979   case vmIntrinsics::_isCompileConstant:
 980     return inline_isCompileConstant();
 981 
 982   default:
 983     // If you get here, it may be that someone has added a new intrinsic
 984     // to the list in vmSymbols.hpp without implementing it here.
 985 #ifndef PRODUCT
 986     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 987       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 988                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 989     }
 990 #endif
 991     return false;
 992   }
 993 }
 994 
 995 Node* LibraryCallKit::try_to_predicate(int predicate) {
 996   if (!jvms()->has_method()) {
 997     // Root JVMState has a null method.
 998     assert(map()->memory()->Opcode() == Op_Parm, "");
 999     // Insert the memory aliasing node
1000     set_all_memory(reset_memory());
1001   }
1002   assert(merged_memory(), "");
1003 
1004   switch (intrinsic_id()) {
1005   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
1006     return inline_cipherBlockChaining_AESCrypt_predicate(false);
1007   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
1008     return inline_cipherBlockChaining_AESCrypt_predicate(true);
1009   case vmIntrinsics::_digestBase_implCompressMB:
1010     return inline_digestBase_implCompressMB_predicate(predicate);
1011 
1012   default:
1013     // If you get here, it may be that someone has added a new intrinsic
1014     // to the list in vmSymbols.hpp without implementing it here.
1015 #ifndef PRODUCT
1016     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
1017       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
1018                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
1019     }
1020 #endif
1021     Node* slow_ctl = control();
1022     set_control(top()); // No fast path instrinsic
1023     return slow_ctl;
1024   }
1025 }
1026 
1027 //------------------------------set_result-------------------------------
1028 // Helper function for finishing intrinsics.
1029 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
1030   record_for_igvn(region);
1031   set_control(_gvn.transform(region));
1032   set_result( _gvn.transform(value));
1033   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
1034 }
1035 
1036 //------------------------------generate_guard---------------------------
1037 // Helper function for generating guarded fast-slow graph structures.
1038 // The given 'test', if true, guards a slow path.  If the test fails
1039 // then a fast path can be taken.  (We generally hope it fails.)
1040 // In all cases, GraphKit::control() is updated to the fast path.
1041 // The returned value represents the control for the slow path.
1042 // The return value is never 'top'; it is either a valid control
1043 // or NULL if it is obvious that the slow path can never be taken.
1044 // Also, if region and the slow control are not NULL, the slow edge
1045 // is appended to the region.
1046 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
1047   if (stopped()) {
1048     // Already short circuited.
1049     return NULL;
1050   }
1051 
1052   // Build an if node and its projections.
1053   // If test is true we take the slow path, which we assume is uncommon.
1054   if (_gvn.type(test) == TypeInt::ZERO) {
1055     // The slow branch is never taken.  No need to build this guard.
1056     return NULL;
1057   }
1058 
1059   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
1060 
1061   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
1062   if (if_slow == top()) {
1063     // The slow branch is never taken.  No need to build this guard.
1064     return NULL;
1065   }
1066 
1067   if (region != NULL)
1068     region->add_req(if_slow);
1069 
1070   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
1071   set_control(if_fast);
1072 
1073   return if_slow;
1074 }
1075 
1076 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
1077   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
1078 }
1079 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
1080   return generate_guard(test, region, PROB_FAIR);
1081 }
1082 
1083 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
1084                                                      Node* *pos_index) {
1085   if (stopped())
1086     return NULL;                // already stopped
1087   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
1088     return NULL;                // index is already adequately typed
1089   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
1090   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1091   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
1092   if (is_neg != NULL && pos_index != NULL) {
1093     // Emulate effect of Parse::adjust_map_after_if.
1094     Node* ccast = new CastIINode(index, TypeInt::POS);
1095     ccast->set_req(0, control());
1096     (*pos_index) = _gvn.transform(ccast);
1097   }
1098   return is_neg;
1099 }
1100 
1101 // Make sure that 'position' is a valid limit index, in [0..length].
1102 // There are two equivalent plans for checking this:
1103 //   A. (offset + copyLength)  unsigned<=  arrayLength
1104 //   B. offset  <=  (arrayLength - copyLength)
1105 // We require that all of the values above, except for the sum and
1106 // difference, are already known to be non-negative.
1107 // Plan A is robust in the face of overflow, if offset and copyLength
1108 // are both hugely positive.
1109 //
1110 // Plan B is less direct and intuitive, but it does not overflow at
1111 // all, since the difference of two non-negatives is always
1112 // representable.  Whenever Java methods must perform the equivalent
1113 // check they generally use Plan B instead of Plan A.
1114 // For the moment we use Plan A.
1115 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1116                                                   Node* subseq_length,
1117                                                   Node* array_length,
1118                                                   RegionNode* region) {
1119   if (stopped())
1120     return NULL;                // already stopped
1121   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1122   if (zero_offset && subseq_length->eqv_uncast(array_length))
1123     return NULL;                // common case of whole-array copy
1124   Node* last = subseq_length;
1125   if (!zero_offset)             // last += offset
1126     last = _gvn.transform(new AddINode(last, offset));
1127   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
1128   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1129   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1130   return is_over;
1131 }
1132 
1133 
1134 //--------------------------generate_current_thread--------------------
1135 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1136   ciKlass*    thread_klass = env()->Thread_klass();
1137   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1138   Node* thread = _gvn.transform(new ThreadLocalNode());
1139   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1140   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1141   tls_output = thread;
1142   return threadObj;
1143 }
1144 
1145 
1146 //------------------------------make_string_method_node------------------------
1147 // Helper method for String intrinsic functions. This version is called
1148 // with str1 and str2 pointing to String object nodes.
1149 //
1150 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1151   Node* no_ctrl = NULL;
1152 
1153   // Get start addr of string
1154   Node* str1_value   = load_String_value(no_ctrl, str1);
1155   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1156   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1157 
1158   // Get length of string 1
1159   Node* str1_len  = load_String_length(no_ctrl, str1);
1160 
1161   Node* str2_value   = load_String_value(no_ctrl, str2);
1162   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1163   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1164 
1165   Node* str2_len = NULL;
1166   Node* result = NULL;
1167 
1168   switch (opcode) {
1169   case Op_StrIndexOf:
1170     // Get length of string 2
1171     str2_len = load_String_length(no_ctrl, str2);
1172 
1173     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1174                                 str1_start, str1_len, str2_start, str2_len);
1175     break;
1176   case Op_StrComp:
1177     // Get length of string 2
1178     str2_len = load_String_length(no_ctrl, str2);
1179 
1180     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1181                              str1_start, str1_len, str2_start, str2_len);
1182     break;
1183   case Op_StrEquals:
1184     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1185                                str1_start, str2_start, str1_len);
1186     break;
1187   default:
1188     ShouldNotReachHere();
1189     return NULL;
1190   }
1191 
1192   // All these intrinsics have checks.
1193   C->set_has_split_ifs(true); // Has chance for split-if optimization
1194 
1195   return _gvn.transform(result);
1196 }
1197 
1198 // Helper method for String intrinsic functions. This version is called
1199 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1200 // to Int nodes containing the lenghts of str1 and str2.
1201 //
1202 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1203   Node* result = NULL;
1204   switch (opcode) {
1205   case Op_StrIndexOf:
1206     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1207                                 str1_start, cnt1, str2_start, cnt2);
1208     break;
1209   case Op_StrComp:
1210     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1211                              str1_start, cnt1, str2_start, cnt2);
1212     break;
1213   case Op_StrEquals:
1214     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1215                                str1_start, str2_start, cnt1);
1216     break;
1217   default:
1218     ShouldNotReachHere();
1219     return NULL;
1220   }
1221 
1222   // All these intrinsics have checks.
1223   C->set_has_split_ifs(true); // Has chance for split-if optimization
1224 
1225   return _gvn.transform(result);
1226 }
1227 
1228 //------------------------------inline_string_compareTo------------------------
1229 // public int java.lang.String.compareTo(String anotherString);
1230 bool LibraryCallKit::inline_string_compareTo() {
1231   Node* receiver = null_check(argument(0));
1232   Node* arg      = null_check(argument(1));
1233   if (stopped()) {
1234     return true;
1235   }
1236   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1237   return true;
1238 }
1239 
1240 //------------------------------inline_string_equals------------------------
1241 bool LibraryCallKit::inline_string_equals() {
1242   Node* receiver = null_check_receiver();
1243   // NOTE: Do not null check argument for String.equals() because spec
1244   // allows to specify NULL as argument.
1245   Node* argument = this->argument(1);
1246   if (stopped()) {
1247     return true;
1248   }
1249 
1250   // paths (plus control) merge
1251   RegionNode* region = new RegionNode(5);
1252   Node* phi = new PhiNode(region, TypeInt::BOOL);
1253 
1254   // does source == target string?
1255   Node* cmp = _gvn.transform(new CmpPNode(receiver, argument));
1256   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1257 
1258   Node* if_eq = generate_slow_guard(bol, NULL);
1259   if (if_eq != NULL) {
1260     // receiver == argument
1261     phi->init_req(2, intcon(1));
1262     region->init_req(2, if_eq);
1263   }
1264 
1265   // get String klass for instanceOf
1266   ciInstanceKlass* klass = env()->String_klass();
1267 
1268   if (!stopped()) {
1269     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1270     Node* cmp  = _gvn.transform(new CmpINode(inst, intcon(1)));
1271     Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1272 
1273     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1274     //instanceOf == true, fallthrough
1275 
1276     if (inst_false != NULL) {
1277       phi->init_req(3, intcon(0));
1278       region->init_req(3, inst_false);
1279     }
1280   }
1281 
1282   if (!stopped()) {
1283     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1284 
1285     // Properly cast the argument to String
1286     argument = _gvn.transform(new CheckCastPPNode(control(), argument, string_type));
1287     // This path is taken only when argument's type is String:NotNull.
1288     argument = cast_not_null(argument, false);
1289 
1290     Node* no_ctrl = NULL;
1291 
1292     // Get start addr of receiver
1293     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1294     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1295     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1296 
1297     // Get length of receiver
1298     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1299 
1300     // Get start addr of argument
1301     Node* argument_val    = load_String_value(no_ctrl, argument);
1302     Node* argument_offset = load_String_offset(no_ctrl, argument);
1303     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1304 
1305     // Get length of argument
1306     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1307 
1308     // Check for receiver count != argument count
1309     Node* cmp = _gvn.transform(new CmpINode(receiver_cnt, argument_cnt));
1310     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1311     Node* if_ne = generate_slow_guard(bol, NULL);
1312     if (if_ne != NULL) {
1313       phi->init_req(4, intcon(0));
1314       region->init_req(4, if_ne);
1315     }
1316 
1317     // Check for count == 0 is done by assembler code for StrEquals.
1318 
1319     if (!stopped()) {
1320       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1321       phi->init_req(1, equals);
1322       region->init_req(1, control());
1323     }
1324   }
1325 
1326   // post merge
1327   set_control(_gvn.transform(region));
1328   record_for_igvn(region);
1329 
1330   set_result(_gvn.transform(phi));
1331   return true;
1332 }
1333 
1334 //------------------------------inline_array_equals----------------------------
1335 bool LibraryCallKit::inline_array_equals() {
1336   Node* arg1 = argument(0);
1337   Node* arg2 = argument(1);
1338   set_result(_gvn.transform(new AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1339   return true;
1340 }
1341 
1342 // Java version of String.indexOf(constant string)
1343 // class StringDecl {
1344 //   StringDecl(char[] ca) {
1345 //     offset = 0;
1346 //     count = ca.length;
1347 //     value = ca;
1348 //   }
1349 //   int offset;
1350 //   int count;
1351 //   char[] value;
1352 // }
1353 //
1354 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1355 //                             int targetOffset, int cache_i, int md2) {
1356 //   int cache = cache_i;
1357 //   int sourceOffset = string_object.offset;
1358 //   int sourceCount = string_object.count;
1359 //   int targetCount = target_object.length;
1360 //
1361 //   int targetCountLess1 = targetCount - 1;
1362 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1363 //
1364 //   char[] source = string_object.value;
1365 //   char[] target = target_object;
1366 //   int lastChar = target[targetCountLess1];
1367 //
1368 //  outer_loop:
1369 //   for (int i = sourceOffset; i < sourceEnd; ) {
1370 //     int src = source[i + targetCountLess1];
1371 //     if (src == lastChar) {
1372 //       // With random strings and a 4-character alphabet,
1373 //       // reverse matching at this point sets up 0.8% fewer
1374 //       // frames, but (paradoxically) makes 0.3% more probes.
1375 //       // Since those probes are nearer the lastChar probe,
1376 //       // there is may be a net D$ win with reverse matching.
1377 //       // But, reversing loop inhibits unroll of inner loop
1378 //       // for unknown reason.  So, does running outer loop from
1379 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1380 //       for (int j = 0; j < targetCountLess1; j++) {
1381 //         if (target[targetOffset + j] != source[i+j]) {
1382 //           if ((cache & (1 << source[i+j])) == 0) {
1383 //             if (md2 < j+1) {
1384 //               i += j+1;
1385 //               continue outer_loop;
1386 //             }
1387 //           }
1388 //           i += md2;
1389 //           continue outer_loop;
1390 //         }
1391 //       }
1392 //       return i - sourceOffset;
1393 //     }
1394 //     if ((cache & (1 << src)) == 0) {
1395 //       i += targetCountLess1;
1396 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1397 //     i++;
1398 //   }
1399 //   return -1;
1400 // }
1401 
1402 //------------------------------string_indexOf------------------------
1403 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1404                                      jint cache_i, jint md2_i) {
1405 
1406   Node* no_ctrl  = NULL;
1407   float likely   = PROB_LIKELY(0.9);
1408   float unlikely = PROB_UNLIKELY(0.9);
1409 
1410   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1411 
1412   Node* source        = load_String_value(no_ctrl, string_object);
1413   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1414   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1415 
1416   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1417   jint target_length = target_array->length();
1418   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1419   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1420 
1421   // String.value field is known to be @Stable.
1422   if (UseImplicitStableValues) {
1423     target = cast_array_to_stable(target, target_type);
1424   }
1425 
1426   IdealKit kit(this, false, true);
1427 #define __ kit.
1428   Node* zero             = __ ConI(0);
1429   Node* one              = __ ConI(1);
1430   Node* cache            = __ ConI(cache_i);
1431   Node* md2              = __ ConI(md2_i);
1432   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1433   Node* targetCountLess1 = __ ConI(target_length - 1);
1434   Node* targetOffset     = __ ConI(targetOffset_i);
1435   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1436 
1437   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1438   Node* outer_loop = __ make_label(2 /* goto */);
1439   Node* return_    = __ make_label(1);
1440 
1441   __ set(rtn,__ ConI(-1));
1442   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1443        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1444        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1445        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1446        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1447          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1448               Node* tpj = __ AddI(targetOffset, __ value(j));
1449               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1450               Node* ipj  = __ AddI(__ value(i), __ value(j));
1451               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1452               __ if_then(targ, BoolTest::ne, src2); {
1453                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1454                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1455                     __ increment(i, __ AddI(__ value(j), one));
1456                     __ goto_(outer_loop);
1457                   } __ end_if(); __ dead(j);
1458                 }__ end_if(); __ dead(j);
1459                 __ increment(i, md2);
1460                 __ goto_(outer_loop);
1461               }__ end_if();
1462               __ increment(j, one);
1463          }__ end_loop(); __ dead(j);
1464          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1465          __ goto_(return_);
1466        }__ end_if();
1467        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1468          __ increment(i, targetCountLess1);
1469        }__ end_if();
1470        __ increment(i, one);
1471        __ bind(outer_loop);
1472   }__ end_loop(); __ dead(i);
1473   __ bind(return_);
1474 
1475   // Final sync IdealKit and GraphKit.
1476   final_sync(kit);
1477   Node* result = __ value(rtn);
1478 #undef __
1479   C->set_has_loops(true);
1480   return result;
1481 }
1482 
1483 //------------------------------inline_string_indexOf------------------------
1484 bool LibraryCallKit::inline_string_indexOf() {
1485   Node* receiver = argument(0);
1486   Node* arg      = argument(1);
1487 
1488   Node* result;
1489   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1490       UseSSE42Intrinsics) {
1491     // Generate SSE4.2 version of indexOf
1492     // We currently only have match rules that use SSE4.2
1493 
1494     receiver = null_check(receiver);
1495     arg      = null_check(arg);
1496     if (stopped()) {
1497       return true;
1498     }
1499 
1500     // Make the merge point
1501     RegionNode* result_rgn = new RegionNode(4);
1502     Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1503     Node* no_ctrl  = NULL;
1504 
1505     // Get start addr of source string
1506     Node* source = load_String_value(no_ctrl, receiver);
1507     Node* source_offset = load_String_offset(no_ctrl, receiver);
1508     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1509 
1510     // Get length of source string
1511     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1512 
1513     // Get start addr of substring
1514     Node* substr = load_String_value(no_ctrl, arg);
1515     Node* substr_offset = load_String_offset(no_ctrl, arg);
1516     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1517 
1518     // Get length of source string
1519     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1520 
1521     // Check for substr count > string count
1522     Node* cmp = _gvn.transform(new CmpINode(substr_cnt, source_cnt));
1523     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1524     Node* if_gt = generate_slow_guard(bol, NULL);
1525     if (if_gt != NULL) {
1526       result_phi->init_req(2, intcon(-1));
1527       result_rgn->init_req(2, if_gt);
1528     }
1529 
1530     if (!stopped()) {
1531       // Check for substr count == 0
1532       cmp = _gvn.transform(new CmpINode(substr_cnt, intcon(0)));
1533       bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1534       Node* if_zero = generate_slow_guard(bol, NULL);
1535       if (if_zero != NULL) {
1536         result_phi->init_req(3, intcon(0));
1537         result_rgn->init_req(3, if_zero);
1538       }
1539     }
1540 
1541     if (!stopped()) {
1542       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1543       result_phi->init_req(1, result);
1544       result_rgn->init_req(1, control());
1545     }
1546     set_control(_gvn.transform(result_rgn));
1547     record_for_igvn(result_rgn);
1548     result = _gvn.transform(result_phi);
1549 
1550   } else { // Use LibraryCallKit::string_indexOf
1551     // don't intrinsify if argument isn't a constant string.
1552     if (!arg->is_Con()) {
1553      return false;
1554     }
1555     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1556     if (str_type == NULL) {
1557       return false;
1558     }
1559     ciInstanceKlass* klass = env()->String_klass();
1560     ciObject* str_const = str_type->const_oop();
1561     if (str_const == NULL || str_const->klass() != klass) {
1562       return false;
1563     }
1564     ciInstance* str = str_const->as_instance();
1565     assert(str != NULL, "must be instance");
1566 
1567     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1568     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1569 
1570     int o;
1571     int c;
1572     if (java_lang_String::has_offset_field()) {
1573       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1574       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1575     } else {
1576       o = 0;
1577       c = pat->length();
1578     }
1579 
1580     // constant strings have no offset and count == length which
1581     // simplifies the resulting code somewhat so lets optimize for that.
1582     if (o != 0 || c != pat->length()) {
1583      return false;
1584     }
1585 
1586     receiver = null_check(receiver, T_OBJECT);
1587     // NOTE: No null check on the argument is needed since it's a constant String oop.
1588     if (stopped()) {
1589       return true;
1590     }
1591 
1592     // The null string as a pattern always returns 0 (match at beginning of string)
1593     if (c == 0) {
1594       set_result(intcon(0));
1595       return true;
1596     }
1597 
1598     // Generate default indexOf
1599     jchar lastChar = pat->char_at(o + (c - 1));
1600     int cache = 0;
1601     int i;
1602     for (i = 0; i < c - 1; i++) {
1603       assert(i < pat->length(), "out of range");
1604       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1605     }
1606 
1607     int md2 = c;
1608     for (i = 0; i < c - 1; i++) {
1609       assert(i < pat->length(), "out of range");
1610       if (pat->char_at(o + i) == lastChar) {
1611         md2 = (c - 1) - i;
1612       }
1613     }
1614 
1615     result = string_indexOf(receiver, pat, o, cache, md2);
1616   }
1617   set_result(result);
1618   return true;
1619 }
1620 
1621 //--------------------------round_double_node--------------------------------
1622 // Round a double node if necessary.
1623 Node* LibraryCallKit::round_double_node(Node* n) {
1624   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1625     n = _gvn.transform(new RoundDoubleNode(0, n));
1626   return n;
1627 }
1628 
1629 //------------------------------inline_math-----------------------------------
1630 // public static double Math.abs(double)
1631 // public static double Math.sqrt(double)
1632 // public static double Math.log(double)
1633 // public static double Math.log10(double)
1634 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1635   Node* arg = round_double_node(argument(0));
1636   Node* n;
1637   switch (id) {
1638   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1639   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1640   case vmIntrinsics::_dlog:   n = new LogDNode(C, control(),   arg);  break;
1641   case vmIntrinsics::_dlog10: n = new Log10DNode(C, control(), arg);  break;
1642   default:  fatal_unexpected_iid(id);  break;
1643   }
1644   set_result(_gvn.transform(n));
1645   return true;
1646 }
1647 
1648 //------------------------------inline_trig----------------------------------
1649 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1650 // argument reduction which will turn into a fast/slow diamond.
1651 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1652   Node* arg = round_double_node(argument(0));
1653   Node* n = NULL;
1654 
1655   switch (id) {
1656   case vmIntrinsics::_dsin:  n = new SinDNode(C, control(), arg);  break;
1657   case vmIntrinsics::_dcos:  n = new CosDNode(C, control(), arg);  break;
1658   case vmIntrinsics::_dtan:  n = new TanDNode(C, control(), arg);  break;
1659   default:  fatal_unexpected_iid(id);  break;
1660   }
1661   n = _gvn.transform(n);
1662 
1663   // Rounding required?  Check for argument reduction!
1664   if (Matcher::strict_fp_requires_explicit_rounding) {
1665     static const double     pi_4 =  0.7853981633974483;
1666     static const double neg_pi_4 = -0.7853981633974483;
1667     // pi/2 in 80-bit extended precision
1668     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1669     // -pi/2 in 80-bit extended precision
1670     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1671     // Cutoff value for using this argument reduction technique
1672     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1673     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1674 
1675     // Pseudocode for sin:
1676     // if (x <= Math.PI / 4.0) {
1677     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1678     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1679     // } else {
1680     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1681     // }
1682     // return StrictMath.sin(x);
1683 
1684     // Pseudocode for cos:
1685     // if (x <= Math.PI / 4.0) {
1686     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1687     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1688     // } else {
1689     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1690     // }
1691     // return StrictMath.cos(x);
1692 
1693     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1694     // requires a special machine instruction to load it.  Instead we'll try
1695     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1696     // probably do the math inside the SIN encoding.
1697 
1698     // Make the merge point
1699     RegionNode* r = new RegionNode(3);
1700     Node* phi = new PhiNode(r, Type::DOUBLE);
1701 
1702     // Flatten arg so we need only 1 test
1703     Node *abs = _gvn.transform(new AbsDNode(arg));
1704     // Node for PI/4 constant
1705     Node *pi4 = makecon(TypeD::make(pi_4));
1706     // Check PI/4 : abs(arg)
1707     Node *cmp = _gvn.transform(new CmpDNode(pi4,abs));
1708     // Check: If PI/4 < abs(arg) then go slow
1709     Node *bol = _gvn.transform(new BoolNode( cmp, BoolTest::lt ));
1710     // Branch either way
1711     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1712     set_control(opt_iff(r,iff));
1713 
1714     // Set fast path result
1715     phi->init_req(2, n);
1716 
1717     // Slow path - non-blocking leaf call
1718     Node* call = NULL;
1719     switch (id) {
1720     case vmIntrinsics::_dsin:
1721       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1722                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1723                                "Sin", NULL, arg, top());
1724       break;
1725     case vmIntrinsics::_dcos:
1726       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1727                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1728                                "Cos", NULL, arg, top());
1729       break;
1730     case vmIntrinsics::_dtan:
1731       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1732                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1733                                "Tan", NULL, arg, top());
1734       break;
1735     }
1736     assert(control()->in(0) == call, "");
1737     Node* slow_result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1738     r->init_req(1, control());
1739     phi->init_req(1, slow_result);
1740 
1741     // Post-merge
1742     set_control(_gvn.transform(r));
1743     record_for_igvn(r);
1744     n = _gvn.transform(phi);
1745 
1746     C->set_has_split_ifs(true); // Has chance for split-if optimization
1747   }
1748   set_result(n);
1749   return true;
1750 }
1751 
1752 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1753   //-------------------
1754   //result=(result.isNaN())? funcAddr():result;
1755   // Check: If isNaN() by checking result!=result? then either trap
1756   // or go to runtime
1757   Node* cmpisnan = _gvn.transform(new CmpDNode(result, result));
1758   // Build the boolean node
1759   Node* bolisnum = _gvn.transform(new BoolNode(cmpisnan, BoolTest::eq));
1760 
1761   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1762     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1763       // The pow or exp intrinsic returned a NaN, which requires a call
1764       // to the runtime.  Recompile with the runtime call.
1765       uncommon_trap(Deoptimization::Reason_intrinsic,
1766                     Deoptimization::Action_make_not_entrant);
1767     }
1768     return result;
1769   } else {
1770     // If this inlining ever returned NaN in the past, we compile a call
1771     // to the runtime to properly handle corner cases
1772 
1773     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1774     Node* if_slow = _gvn.transform(new IfFalseNode(iff));
1775     Node* if_fast = _gvn.transform(new IfTrueNode(iff));
1776 
1777     if (!if_slow->is_top()) {
1778       RegionNode* result_region = new RegionNode(3);
1779       PhiNode*    result_val = new PhiNode(result_region, Type::DOUBLE);
1780 
1781       result_region->init_req(1, if_fast);
1782       result_val->init_req(1, result);
1783 
1784       set_control(if_slow);
1785 
1786       const TypePtr* no_memory_effects = NULL;
1787       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1788                                    no_memory_effects,
1789                                    x, top(), y, y ? top() : NULL);
1790       Node* value = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+0));
1791 #ifdef ASSERT
1792       Node* value_top = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+1));
1793       assert(value_top == top(), "second value must be top");
1794 #endif
1795 
1796       result_region->init_req(2, control());
1797       result_val->init_req(2, value);
1798       set_control(_gvn.transform(result_region));
1799       return _gvn.transform(result_val);
1800     } else {
1801       return result;
1802     }
1803   }
1804 }
1805 
1806 //------------------------------inline_exp-------------------------------------
1807 // Inline exp instructions, if possible.  The Intel hardware only misses
1808 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1809 bool LibraryCallKit::inline_exp() {
1810   Node* arg = round_double_node(argument(0));
1811   Node* n   = _gvn.transform(new ExpDNode(C, control(), arg));
1812 
1813   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1814   set_result(n);
1815 
1816   C->set_has_split_ifs(true); // Has chance for split-if optimization
1817   return true;
1818 }
1819 
1820 //------------------------------inline_pow-------------------------------------
1821 // Inline power instructions, if possible.
1822 bool LibraryCallKit::inline_pow() {
1823   // Pseudocode for pow
1824   // if (y == 2) {
1825   //   return x * x;
1826   // } else {
1827   //   if (x <= 0.0) {
1828   //     long longy = (long)y;
1829   //     if ((double)longy == y) { // if y is long
1830   //       if (y + 1 == y) longy = 0; // huge number: even
1831   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1832   //     } else {
1833   //       result = NaN;
1834   //     }
1835   //   } else {
1836   //     result = DPow(x,y);
1837   //   }
1838   //   if (result != result)?  {
1839   //     result = uncommon_trap() or runtime_call();
1840   //   }
1841   //   return result;
1842   // }
1843 
1844   Node* x = round_double_node(argument(0));
1845   Node* y = round_double_node(argument(2));
1846 
1847   Node* result = NULL;
1848 
1849   Node*   const_two_node = makecon(TypeD::make(2.0));
1850   Node*   cmp_node       = _gvn.transform(new CmpDNode(y, const_two_node));
1851   Node*   bool_node      = _gvn.transform(new BoolNode(cmp_node, BoolTest::eq));
1852   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1853   Node*   if_true        = _gvn.transform(new IfTrueNode(if_node));
1854   Node*   if_false       = _gvn.transform(new IfFalseNode(if_node));
1855 
1856   RegionNode* region_node = new RegionNode(3);
1857   region_node->init_req(1, if_true);
1858 
1859   Node* phi_node = new PhiNode(region_node, Type::DOUBLE);
1860   // special case for x^y where y == 2, we can convert it to x * x
1861   phi_node->init_req(1, _gvn.transform(new MulDNode(x, x)));
1862 
1863   // set control to if_false since we will now process the false branch
1864   set_control(if_false);
1865 
1866   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1867     // Short form: skip the fancy tests and just check for NaN result.
1868     result = _gvn.transform(new PowDNode(C, control(), x, y));
1869   } else {
1870     // If this inlining ever returned NaN in the past, include all
1871     // checks + call to the runtime.
1872 
1873     // Set the merge point for If node with condition of (x <= 0.0)
1874     // There are four possible paths to region node and phi node
1875     RegionNode *r = new RegionNode(4);
1876     Node *phi = new PhiNode(r, Type::DOUBLE);
1877 
1878     // Build the first if node: if (x <= 0.0)
1879     // Node for 0 constant
1880     Node *zeronode = makecon(TypeD::ZERO);
1881     // Check x:0
1882     Node *cmp = _gvn.transform(new CmpDNode(x, zeronode));
1883     // Check: If (x<=0) then go complex path
1884     Node *bol1 = _gvn.transform(new BoolNode( cmp, BoolTest::le ));
1885     // Branch either way
1886     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1887     // Fast path taken; set region slot 3
1888     Node *fast_taken = _gvn.transform(new IfFalseNode(if1));
1889     r->init_req(3,fast_taken); // Capture fast-control
1890 
1891     // Fast path not-taken, i.e. slow path
1892     Node *complex_path = _gvn.transform(new IfTrueNode(if1));
1893 
1894     // Set fast path result
1895     Node *fast_result = _gvn.transform(new PowDNode(C, control(), x, y));
1896     phi->init_req(3, fast_result);
1897 
1898     // Complex path
1899     // Build the second if node (if y is long)
1900     // Node for (long)y
1901     Node *longy = _gvn.transform(new ConvD2LNode(y));
1902     // Node for (double)((long) y)
1903     Node *doublelongy= _gvn.transform(new ConvL2DNode(longy));
1904     // Check (double)((long) y) : y
1905     Node *cmplongy= _gvn.transform(new CmpDNode(doublelongy, y));
1906     // Check if (y isn't long) then go to slow path
1907 
1908     Node *bol2 = _gvn.transform(new BoolNode( cmplongy, BoolTest::ne ));
1909     // Branch either way
1910     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1911     Node* ylong_path = _gvn.transform(new IfFalseNode(if2));
1912 
1913     Node *slow_path = _gvn.transform(new IfTrueNode(if2));
1914 
1915     // Calculate DPow(abs(x), y)*(1 & (long)y)
1916     // Node for constant 1
1917     Node *conone = longcon(1);
1918     // 1& (long)y
1919     Node *signnode= _gvn.transform(new AndLNode(conone, longy));
1920 
1921     // A huge number is always even. Detect a huge number by checking
1922     // if y + 1 == y and set integer to be tested for parity to 0.
1923     // Required for corner case:
1924     // (long)9.223372036854776E18 = max_jlong
1925     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1926     // max_jlong is odd but 9.223372036854776E18 is even
1927     Node* yplus1 = _gvn.transform(new AddDNode(y, makecon(TypeD::make(1))));
1928     Node *cmpyplus1= _gvn.transform(new CmpDNode(yplus1, y));
1929     Node *bolyplus1 = _gvn.transform(new BoolNode( cmpyplus1, BoolTest::eq ));
1930     Node* correctedsign = NULL;
1931     if (ConditionalMoveLimit != 0) {
1932       correctedsign = _gvn.transform(CMoveNode::make(NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1933     } else {
1934       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1935       RegionNode *r = new RegionNode(3);
1936       Node *phi = new PhiNode(r, TypeLong::LONG);
1937       r->init_req(1, _gvn.transform(new IfFalseNode(ifyplus1)));
1938       r->init_req(2, _gvn.transform(new IfTrueNode(ifyplus1)));
1939       phi->init_req(1, signnode);
1940       phi->init_req(2, longcon(0));
1941       correctedsign = _gvn.transform(phi);
1942       ylong_path = _gvn.transform(r);
1943       record_for_igvn(r);
1944     }
1945 
1946     // zero node
1947     Node *conzero = longcon(0);
1948     // Check (1&(long)y)==0?
1949     Node *cmpeq1 = _gvn.transform(new CmpLNode(correctedsign, conzero));
1950     // Check if (1&(long)y)!=0?, if so the result is negative
1951     Node *bol3 = _gvn.transform(new BoolNode( cmpeq1, BoolTest::ne ));
1952     // abs(x)
1953     Node *absx=_gvn.transform(new AbsDNode(x));
1954     // abs(x)^y
1955     Node *absxpowy = _gvn.transform(new PowDNode(C, control(), absx, y));
1956     // -abs(x)^y
1957     Node *negabsxpowy = _gvn.transform(new NegDNode (absxpowy));
1958     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1959     Node *signresult = NULL;
1960     if (ConditionalMoveLimit != 0) {
1961       signresult = _gvn.transform(CMoveNode::make(NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1962     } else {
1963       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1964       RegionNode *r = new RegionNode(3);
1965       Node *phi = new PhiNode(r, Type::DOUBLE);
1966       r->init_req(1, _gvn.transform(new IfFalseNode(ifyeven)));
1967       r->init_req(2, _gvn.transform(new IfTrueNode(ifyeven)));
1968       phi->init_req(1, absxpowy);
1969       phi->init_req(2, negabsxpowy);
1970       signresult = _gvn.transform(phi);
1971       ylong_path = _gvn.transform(r);
1972       record_for_igvn(r);
1973     }
1974     // Set complex path fast result
1975     r->init_req(2, ylong_path);
1976     phi->init_req(2, signresult);
1977 
1978     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1979     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1980     r->init_req(1,slow_path);
1981     phi->init_req(1,slow_result);
1982 
1983     // Post merge
1984     set_control(_gvn.transform(r));
1985     record_for_igvn(r);
1986     result = _gvn.transform(phi);
1987   }
1988 
1989   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1990 
1991   // control from finish_pow_exp is now input to the region node
1992   region_node->set_req(2, control());
1993   // the result from finish_pow_exp is now input to the phi node
1994   phi_node->init_req(2, result);
1995   set_control(_gvn.transform(region_node));
1996   record_for_igvn(region_node);
1997   set_result(_gvn.transform(phi_node));
1998 
1999   C->set_has_split_ifs(true); // Has chance for split-if optimization
2000   return true;
2001 }
2002 
2003 //------------------------------runtime_math-----------------------------
2004 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
2005   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
2006          "must be (DD)D or (D)D type");
2007 
2008   // Inputs
2009   Node* a = round_double_node(argument(0));
2010   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
2011 
2012   const TypePtr* no_memory_effects = NULL;
2013   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
2014                                  no_memory_effects,
2015                                  a, top(), b, b ? top() : NULL);
2016   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
2017 #ifdef ASSERT
2018   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
2019   assert(value_top == top(), "second value must be top");
2020 #endif
2021 
2022   set_result(value);
2023   return true;
2024 }
2025 
2026 //------------------------------inline_math_native-----------------------------
2027 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
2028 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
2029   switch (id) {
2030     // These intrinsics are not properly supported on all hardware
2031   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
2032     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
2033   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
2034     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
2035   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
2036     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
2037 
2038   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
2039     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
2040   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
2041     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
2042 
2043     // These intrinsics are supported on all hardware
2044   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
2045   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
2046 
2047   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
2048     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
2049   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
2050     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
2051 #undef FN_PTR
2052 
2053    // These intrinsics are not yet correctly implemented
2054   case vmIntrinsics::_datan2:
2055     return false;
2056 
2057   default:
2058     fatal_unexpected_iid(id);
2059     return false;
2060   }
2061 }
2062 
2063 static bool is_simple_name(Node* n) {
2064   return (n->req() == 1         // constant
2065           || (n->is_Type() && n->as_Type()->type()->singleton())
2066           || n->is_Proj()       // parameter or return value
2067           || n->is_Phi()        // local of some sort
2068           );
2069 }
2070 
2071 //----------------------------inline_min_max-----------------------------------
2072 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
2073   set_result(generate_min_max(id, argument(0), argument(1)));
2074   return true;
2075 }
2076 
2077 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
2078   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
2079   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2080   Node* fast_path = _gvn.transform( new IfFalseNode(check));
2081   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
2082 
2083   {
2084     PreserveJVMState pjvms(this);
2085     PreserveReexecuteState preexecs(this);
2086     jvms()->set_should_reexecute(true);
2087 
2088     set_control(slow_path);
2089     set_i_o(i_o());
2090 
2091     uncommon_trap(Deoptimization::Reason_intrinsic,
2092                   Deoptimization::Action_none);
2093   }
2094 
2095   set_control(fast_path);
2096   set_result(math);
2097 }
2098 
2099 template <typename OverflowOp>
2100 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2101   typedef typename OverflowOp::MathOp MathOp;
2102 
2103   MathOp* mathOp = new MathOp(arg1, arg2);
2104   Node* operation = _gvn.transform( mathOp );
2105   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
2106   inline_math_mathExact(operation, ofcheck);
2107   return true;
2108 }
2109 
2110 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2111   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2112 }
2113 
2114 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2115   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2116 }
2117 
2118 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2119   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2120 }
2121 
2122 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2123   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2124 }
2125 
2126 bool LibraryCallKit::inline_math_negateExactI() {
2127   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2128 }
2129 
2130 bool LibraryCallKit::inline_math_negateExactL() {
2131   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2132 }
2133 
2134 bool LibraryCallKit::inline_math_multiplyExactI() {
2135   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2136 }
2137 
2138 bool LibraryCallKit::inline_math_multiplyExactL() {
2139   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2140 }
2141 
2142 Node*
2143 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2144   // These are the candidate return value:
2145   Node* xvalue = x0;
2146   Node* yvalue = y0;
2147 
2148   if (xvalue == yvalue) {
2149     return xvalue;
2150   }
2151 
2152   bool want_max = (id == vmIntrinsics::_max);
2153 
2154   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2155   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2156   if (txvalue == NULL || tyvalue == NULL)  return top();
2157   // This is not really necessary, but it is consistent with a
2158   // hypothetical MaxINode::Value method:
2159   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2160 
2161   // %%% This folding logic should (ideally) be in a different place.
2162   // Some should be inside IfNode, and there to be a more reliable
2163   // transformation of ?: style patterns into cmoves.  We also want
2164   // more powerful optimizations around cmove and min/max.
2165 
2166   // Try to find a dominating comparison of these guys.
2167   // It can simplify the index computation for Arrays.copyOf
2168   // and similar uses of System.arraycopy.
2169   // First, compute the normalized version of CmpI(x, y).
2170   int   cmp_op = Op_CmpI;
2171   Node* xkey = xvalue;
2172   Node* ykey = yvalue;
2173   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
2174   if (ideal_cmpxy->is_Cmp()) {
2175     // E.g., if we have CmpI(length - offset, count),
2176     // it might idealize to CmpI(length, count + offset)
2177     cmp_op = ideal_cmpxy->Opcode();
2178     xkey = ideal_cmpxy->in(1);
2179     ykey = ideal_cmpxy->in(2);
2180   }
2181 
2182   // Start by locating any relevant comparisons.
2183   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2184   Node* cmpxy = NULL;
2185   Node* cmpyx = NULL;
2186   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2187     Node* cmp = start_from->fast_out(k);
2188     if (cmp->outcnt() > 0 &&            // must have prior uses
2189         cmp->in(0) == NULL &&           // must be context-independent
2190         cmp->Opcode() == cmp_op) {      // right kind of compare
2191       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2192       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2193     }
2194   }
2195 
2196   const int NCMPS = 2;
2197   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2198   int cmpn;
2199   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2200     if (cmps[cmpn] != NULL)  break;     // find a result
2201   }
2202   if (cmpn < NCMPS) {
2203     // Look for a dominating test that tells us the min and max.
2204     int depth = 0;                // Limit search depth for speed
2205     Node* dom = control();
2206     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2207       if (++depth >= 100)  break;
2208       Node* ifproj = dom;
2209       if (!ifproj->is_Proj())  continue;
2210       Node* iff = ifproj->in(0);
2211       if (!iff->is_If())  continue;
2212       Node* bol = iff->in(1);
2213       if (!bol->is_Bool())  continue;
2214       Node* cmp = bol->in(1);
2215       if (cmp == NULL)  continue;
2216       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2217         if (cmps[cmpn] == cmp)  break;
2218       if (cmpn == NCMPS)  continue;
2219       BoolTest::mask btest = bol->as_Bool()->_test._test;
2220       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2221       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2222       // At this point, we know that 'x btest y' is true.
2223       switch (btest) {
2224       case BoolTest::eq:
2225         // They are proven equal, so we can collapse the min/max.
2226         // Either value is the answer.  Choose the simpler.
2227         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2228           return yvalue;
2229         return xvalue;
2230       case BoolTest::lt:          // x < y
2231       case BoolTest::le:          // x <= y
2232         return (want_max ? yvalue : xvalue);
2233       case BoolTest::gt:          // x > y
2234       case BoolTest::ge:          // x >= y
2235         return (want_max ? xvalue : yvalue);
2236       }
2237     }
2238   }
2239 
2240   // We failed to find a dominating test.
2241   // Let's pick a test that might GVN with prior tests.
2242   Node*          best_bol   = NULL;
2243   BoolTest::mask best_btest = BoolTest::illegal;
2244   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2245     Node* cmp = cmps[cmpn];
2246     if (cmp == NULL)  continue;
2247     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2248       Node* bol = cmp->fast_out(j);
2249       if (!bol->is_Bool())  continue;
2250       BoolTest::mask btest = bol->as_Bool()->_test._test;
2251       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2252       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2253       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2254         best_bol   = bol->as_Bool();
2255         best_btest = btest;
2256       }
2257     }
2258   }
2259 
2260   Node* answer_if_true  = NULL;
2261   Node* answer_if_false = NULL;
2262   switch (best_btest) {
2263   default:
2264     if (cmpxy == NULL)
2265       cmpxy = ideal_cmpxy;
2266     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2267     // and fall through:
2268   case BoolTest::lt:          // x < y
2269   case BoolTest::le:          // x <= y
2270     answer_if_true  = (want_max ? yvalue : xvalue);
2271     answer_if_false = (want_max ? xvalue : yvalue);
2272     break;
2273   case BoolTest::gt:          // x > y
2274   case BoolTest::ge:          // x >= y
2275     answer_if_true  = (want_max ? xvalue : yvalue);
2276     answer_if_false = (want_max ? yvalue : xvalue);
2277     break;
2278   }
2279 
2280   jint hi, lo;
2281   if (want_max) {
2282     // We can sharpen the minimum.
2283     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2284     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2285   } else {
2286     // We can sharpen the maximum.
2287     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2288     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2289   }
2290 
2291   // Use a flow-free graph structure, to avoid creating excess control edges
2292   // which could hinder other optimizations.
2293   // Since Math.min/max is often used with arraycopy, we want
2294   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2295   Node* cmov = CMoveNode::make(NULL, best_bol,
2296                                answer_if_false, answer_if_true,
2297                                TypeInt::make(lo, hi, widen));
2298 
2299   return _gvn.transform(cmov);
2300 
2301   /*
2302   // This is not as desirable as it may seem, since Min and Max
2303   // nodes do not have a full set of optimizations.
2304   // And they would interfere, anyway, with 'if' optimizations
2305   // and with CMoveI canonical forms.
2306   switch (id) {
2307   case vmIntrinsics::_min:
2308     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2309   case vmIntrinsics::_max:
2310     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2311   default:
2312     ShouldNotReachHere();
2313   }
2314   */
2315 }
2316 
2317 inline int
2318 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2319   const TypePtr* base_type = TypePtr::NULL_PTR;
2320   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2321   if (base_type == NULL) {
2322     // Unknown type.
2323     return Type::AnyPtr;
2324   } else if (base_type == TypePtr::NULL_PTR) {
2325     // Since this is a NULL+long form, we have to switch to a rawptr.
2326     base   = _gvn.transform(new CastX2PNode(offset));
2327     offset = MakeConX(0);
2328     return Type::RawPtr;
2329   } else if (base_type->base() == Type::RawPtr) {
2330     return Type::RawPtr;
2331   } else if (base_type->isa_oopptr()) {
2332     // Base is never null => always a heap address.
2333     if (base_type->ptr() == TypePtr::NotNull) {
2334       return Type::OopPtr;
2335     }
2336     // Offset is small => always a heap address.
2337     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2338     if (offset_type != NULL &&
2339         base_type->offset() == 0 &&     // (should always be?)
2340         offset_type->_lo >= 0 &&
2341         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2342       return Type::OopPtr;
2343     }
2344     // Otherwise, it might either be oop+off or NULL+addr.
2345     return Type::AnyPtr;
2346   } else {
2347     // No information:
2348     return Type::AnyPtr;
2349   }
2350 }
2351 
2352 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2353   int kind = classify_unsafe_addr(base, offset);
2354   if (kind == Type::RawPtr) {
2355     return basic_plus_adr(top(), base, offset);
2356   } else {
2357     return basic_plus_adr(base, offset);
2358   }
2359 }
2360 
2361 //--------------------------inline_number_methods-----------------------------
2362 // inline int     Integer.numberOfLeadingZeros(int)
2363 // inline int        Long.numberOfLeadingZeros(long)
2364 //
2365 // inline int     Integer.numberOfTrailingZeros(int)
2366 // inline int        Long.numberOfTrailingZeros(long)
2367 //
2368 // inline int     Integer.bitCount(int)
2369 // inline int        Long.bitCount(long)
2370 //
2371 // inline char  Character.reverseBytes(char)
2372 // inline short     Short.reverseBytes(short)
2373 // inline int     Integer.reverseBytes(int)
2374 // inline long       Long.reverseBytes(long)
2375 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2376   Node* arg = argument(0);
2377   Node* n;
2378   switch (id) {
2379   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2380   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2381   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2382   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2383   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2384   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2385   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2386   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2387   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2388   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2389   default:  fatal_unexpected_iid(id);  break;
2390   }
2391   set_result(_gvn.transform(n));
2392   return true;
2393 }
2394 
2395 //----------------------------inline_unsafe_access----------------------------
2396 
2397 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2398 
2399 // Helper that guards and inserts a pre-barrier.
2400 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2401                                         Node* pre_val, bool need_mem_bar) {
2402   // We could be accessing the referent field of a reference object. If so, when G1
2403   // is enabled, we need to log the value in the referent field in an SATB buffer.
2404   // This routine performs some compile time filters and generates suitable
2405   // runtime filters that guard the pre-barrier code.
2406   // Also add memory barrier for non volatile load from the referent field
2407   // to prevent commoning of loads across safepoint.
2408   if (!UseG1GC && !need_mem_bar)
2409     return;
2410 
2411   // Some compile time checks.
2412 
2413   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2414   const TypeX* otype = offset->find_intptr_t_type();
2415   if (otype != NULL && otype->is_con() &&
2416       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2417     // Constant offset but not the reference_offset so just return
2418     return;
2419   }
2420 
2421   // We only need to generate the runtime guards for instances.
2422   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2423   if (btype != NULL) {
2424     if (btype->isa_aryptr()) {
2425       // Array type so nothing to do
2426       return;
2427     }
2428 
2429     const TypeInstPtr* itype = btype->isa_instptr();
2430     if (itype != NULL) {
2431       // Can the klass of base_oop be statically determined to be
2432       // _not_ a sub-class of Reference and _not_ Object?
2433       ciKlass* klass = itype->klass();
2434       if ( klass->is_loaded() &&
2435           !klass->is_subtype_of(env()->Reference_klass()) &&
2436           !env()->Object_klass()->is_subtype_of(klass)) {
2437         return;
2438       }
2439     }
2440   }
2441 
2442   // The compile time filters did not reject base_oop/offset so
2443   // we need to generate the following runtime filters
2444   //
2445   // if (offset == java_lang_ref_Reference::_reference_offset) {
2446   //   if (instance_of(base, java.lang.ref.Reference)) {
2447   //     pre_barrier(_, pre_val, ...);
2448   //   }
2449   // }
2450 
2451   float likely   = PROB_LIKELY(  0.999);
2452   float unlikely = PROB_UNLIKELY(0.999);
2453 
2454   IdealKit ideal(this);
2455 #define __ ideal.
2456 
2457   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2458 
2459   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2460       // Update graphKit memory and control from IdealKit.
2461       sync_kit(ideal);
2462 
2463       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2464       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2465 
2466       // Update IdealKit memory and control from graphKit.
2467       __ sync_kit(this);
2468 
2469       Node* one = __ ConI(1);
2470       // is_instof == 0 if base_oop == NULL
2471       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2472 
2473         // Update graphKit from IdeakKit.
2474         sync_kit(ideal);
2475 
2476         // Use the pre-barrier to record the value in the referent field
2477         pre_barrier(false /* do_load */,
2478                     __ ctrl(),
2479                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2480                     pre_val /* pre_val */,
2481                     T_OBJECT);
2482         if (need_mem_bar) {
2483           // Add memory barrier to prevent commoning reads from this field
2484           // across safepoint since GC can change its value.
2485           insert_mem_bar(Op_MemBarCPUOrder);
2486         }
2487         // Update IdealKit from graphKit.
2488         __ sync_kit(this);
2489 
2490       } __ end_if(); // _ref_type != ref_none
2491   } __ end_if(); // offset == referent_offset
2492 
2493   // Final sync IdealKit and GraphKit.
2494   final_sync(ideal);
2495 #undef __
2496 }
2497 
2498 
2499 // Interpret Unsafe.fieldOffset cookies correctly:
2500 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2501 
2502 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2503   // Attempt to infer a sharper value type from the offset and base type.
2504   ciKlass* sharpened_klass = NULL;
2505 
2506   // See if it is an instance field, with an object type.
2507   if (alias_type->field() != NULL) {
2508     assert(!is_native_ptr, "native pointer op cannot use a java address");
2509     if (alias_type->field()->type()->is_klass()) {
2510       sharpened_klass = alias_type->field()->type()->as_klass();
2511     }
2512   }
2513 
2514   // See if it is a narrow oop array.
2515   if (adr_type->isa_aryptr()) {
2516     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2517       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2518       if (elem_type != NULL) {
2519         sharpened_klass = elem_type->klass();
2520       }
2521     }
2522   }
2523 
2524   // The sharpened class might be unloaded if there is no class loader
2525   // contraint in place.
2526   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2527     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2528 
2529 #ifndef PRODUCT
2530     if (C->print_intrinsics() || C->print_inlining()) {
2531       tty->print("  from base type: ");  adr_type->dump();
2532       tty->print("  sharpened value: ");  tjp->dump();
2533     }
2534 #endif
2535     // Sharpen the value type.
2536     return tjp;
2537   }
2538   return NULL;
2539 }
2540 
2541 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2542   if (callee()->is_static())  return false;  // caller must have the capability!
2543 
2544 #ifndef PRODUCT
2545   {
2546     ResourceMark rm;
2547     // Check the signatures.
2548     ciSignature* sig = callee()->signature();
2549 #ifdef ASSERT
2550     if (!is_store) {
2551       // Object getObject(Object base, int/long offset), etc.
2552       BasicType rtype = sig->return_type()->basic_type();
2553       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2554           rtype = T_ADDRESS;  // it is really a C void*
2555       assert(rtype == type, "getter must return the expected value");
2556       if (!is_native_ptr) {
2557         assert(sig->count() == 2, "oop getter has 2 arguments");
2558         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2559         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2560       } else {
2561         assert(sig->count() == 1, "native getter has 1 argument");
2562         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2563       }
2564     } else {
2565       // void putObject(Object base, int/long offset, Object x), etc.
2566       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2567       if (!is_native_ptr) {
2568         assert(sig->count() == 3, "oop putter has 3 arguments");
2569         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2570         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2571       } else {
2572         assert(sig->count() == 2, "native putter has 2 arguments");
2573         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2574       }
2575       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2576       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2577         vtype = T_ADDRESS;  // it is really a C void*
2578       assert(vtype == type, "putter must accept the expected value");
2579     }
2580 #endif // ASSERT
2581  }
2582 #endif //PRODUCT
2583 
2584   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2585 
2586   Node* receiver = argument(0);  // type: oop
2587 
2588   // Build address expression.
2589   Node* adr;
2590   Node* heap_base_oop = top();
2591   Node* offset = top();
2592   Node* val;
2593 
2594   if (!is_native_ptr) {
2595     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2596     Node* base = argument(1);  // type: oop
2597     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2598     offset = argument(2);  // type: long
2599     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2600     // to be plain byte offsets, which are also the same as those accepted
2601     // by oopDesc::field_base.
2602     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2603            "fieldOffset must be byte-scaled");
2604     // 32-bit machines ignore the high half!
2605     offset = ConvL2X(offset);
2606     adr = make_unsafe_address(base, offset);
2607     heap_base_oop = base;
2608     val = is_store ? argument(4) : NULL;
2609   } else {
2610     Node* ptr = argument(1);  // type: long
2611     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2612     adr = make_unsafe_address(NULL, ptr);
2613     val = is_store ? argument(3) : NULL;
2614   }
2615 
2616   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2617 
2618   // First guess at the value type.
2619   const Type *value_type = Type::get_const_basic_type(type);
2620 
2621   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2622   // there was not enough information to nail it down.
2623   Compile::AliasType* alias_type = C->alias_type(adr_type);
2624   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2625 
2626   // We will need memory barriers unless we can determine a unique
2627   // alias category for this reference.  (Note:  If for some reason
2628   // the barriers get omitted and the unsafe reference begins to "pollute"
2629   // the alias analysis of the rest of the graph, either Compile::can_alias
2630   // or Compile::must_alias will throw a diagnostic assert.)
2631   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2632 
2633   // If we are reading the value of the referent field of a Reference
2634   // object (either by using Unsafe directly or through reflection)
2635   // then, if G1 is enabled, we need to record the referent in an
2636   // SATB log buffer using the pre-barrier mechanism.
2637   // Also we need to add memory barrier to prevent commoning reads
2638   // from this field across safepoint since GC can change its value.
2639   bool need_read_barrier = !is_native_ptr && !is_store &&
2640                            offset != top() && heap_base_oop != top();
2641 
2642   if (!is_store && type == T_OBJECT) {
2643     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2644     if (tjp != NULL) {
2645       value_type = tjp;
2646     }
2647   }
2648 
2649   receiver = null_check(receiver);
2650   if (stopped()) {
2651     return true;
2652   }
2653   // Heap pointers get a null-check from the interpreter,
2654   // as a courtesy.  However, this is not guaranteed by Unsafe,
2655   // and it is not possible to fully distinguish unintended nulls
2656   // from intended ones in this API.
2657 
2658   if (is_volatile) {
2659     // We need to emit leading and trailing CPU membars (see below) in
2660     // addition to memory membars when is_volatile. This is a little
2661     // too strong, but avoids the need to insert per-alias-type
2662     // volatile membars (for stores; compare Parse::do_put_xxx), which
2663     // we cannot do effectively here because we probably only have a
2664     // rough approximation of type.
2665     need_mem_bar = true;
2666     // For Stores, place a memory ordering barrier now.
2667     if (is_store) {
2668       insert_mem_bar(Op_MemBarRelease);
2669     } else {
2670       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2671         insert_mem_bar(Op_MemBarVolatile);
2672       }
2673     }
2674   }
2675 
2676   // Memory barrier to prevent normal and 'unsafe' accesses from
2677   // bypassing each other.  Happens after null checks, so the
2678   // exception paths do not take memory state from the memory barrier,
2679   // so there's no problems making a strong assert about mixing users
2680   // of safe & unsafe memory.
2681   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2682 
2683   if (!is_store) {
2684     MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered;
2685     // To be valid, unsafe loads may depend on other conditions than
2686     // the one that guards them: pin the Load node
2687     Node* p = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, is_volatile);
2688     // load value
2689     switch (type) {
2690     case T_BOOLEAN:
2691     case T_CHAR:
2692     case T_BYTE:
2693     case T_SHORT:
2694     case T_INT:
2695     case T_LONG:
2696     case T_FLOAT:
2697     case T_DOUBLE:
2698       break;
2699     case T_OBJECT:
2700       if (need_read_barrier) {
2701         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2702       }
2703       break;
2704     case T_ADDRESS:
2705       // Cast to an int type.
2706       p = _gvn.transform(new CastP2XNode(NULL, p));
2707       p = ConvX2UL(p);
2708       break;
2709     default:
2710       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2711       break;
2712     }
2713     // The load node has the control of the preceding MemBarCPUOrder.  All
2714     // following nodes will have the control of the MemBarCPUOrder inserted at
2715     // the end of this method.  So, pushing the load onto the stack at a later
2716     // point is fine.
2717     set_result(p);
2718   } else {
2719     // place effect of store into memory
2720     switch (type) {
2721     case T_DOUBLE:
2722       val = dstore_rounding(val);
2723       break;
2724     case T_ADDRESS:
2725       // Repackage the long as a pointer.
2726       val = ConvL2X(val);
2727       val = _gvn.transform(new CastX2PNode(val));
2728       break;
2729     }
2730 
2731     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2732     if (type != T_OBJECT ) {
2733       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
2734     } else {
2735       // Possibly an oop being stored to Java heap or native memory
2736       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2737         // oop to Java heap.
2738         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2739       } else {
2740         // We can't tell at compile time if we are storing in the Java heap or outside
2741         // of it. So we need to emit code to conditionally do the proper type of
2742         // store.
2743 
2744         IdealKit ideal(this);
2745 #define __ ideal.
2746         // QQQ who knows what probability is here??
2747         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2748           // Sync IdealKit and graphKit.
2749           sync_kit(ideal);
2750           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2751           // Update IdealKit memory.
2752           __ sync_kit(this);
2753         } __ else_(); {
2754           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
2755         } __ end_if();
2756         // Final sync IdealKit and GraphKit.
2757         final_sync(ideal);
2758 #undef __
2759       }
2760     }
2761   }
2762 
2763   if (is_volatile) {
2764     if (!is_store) {
2765       insert_mem_bar(Op_MemBarAcquire);
2766     } else {
2767       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2768         insert_mem_bar(Op_MemBarVolatile);
2769       }
2770     }
2771   }
2772 
2773   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2774 
2775   return true;
2776 }
2777 
2778 //----------------------------inline_unsafe_load_store----------------------------
2779 // This method serves a couple of different customers (depending on LoadStoreKind):
2780 //
2781 // LS_cmpxchg:
2782 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2783 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2784 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2785 //
2786 // LS_xadd:
2787 //   public int  getAndAddInt( Object o, long offset, int  delta)
2788 //   public long getAndAddLong(Object o, long offset, long delta)
2789 //
2790 // LS_xchg:
2791 //   int    getAndSet(Object o, long offset, int    newValue)
2792 //   long   getAndSet(Object o, long offset, long   newValue)
2793 //   Object getAndSet(Object o, long offset, Object newValue)
2794 //
2795 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2796   // This basic scheme here is the same as inline_unsafe_access, but
2797   // differs in enough details that combining them would make the code
2798   // overly confusing.  (This is a true fact! I originally combined
2799   // them, but even I was confused by it!) As much code/comments as
2800   // possible are retained from inline_unsafe_access though to make
2801   // the correspondences clearer. - dl
2802 
2803   if (callee()->is_static())  return false;  // caller must have the capability!
2804 
2805 #ifndef PRODUCT
2806   BasicType rtype;
2807   {
2808     ResourceMark rm;
2809     // Check the signatures.
2810     ciSignature* sig = callee()->signature();
2811     rtype = sig->return_type()->basic_type();
2812     if (kind == LS_xadd || kind == LS_xchg) {
2813       // Check the signatures.
2814 #ifdef ASSERT
2815       assert(rtype == type, "get and set must return the expected type");
2816       assert(sig->count() == 3, "get and set has 3 arguments");
2817       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2818       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2819       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2820 #endif // ASSERT
2821     } else if (kind == LS_cmpxchg) {
2822       // Check the signatures.
2823 #ifdef ASSERT
2824       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2825       assert(sig->count() == 4, "CAS has 4 arguments");
2826       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2827       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2828 #endif // ASSERT
2829     } else {
2830       ShouldNotReachHere();
2831     }
2832   }
2833 #endif //PRODUCT
2834 
2835   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2836 
2837   // Get arguments:
2838   Node* receiver = NULL;
2839   Node* base     = NULL;
2840   Node* offset   = NULL;
2841   Node* oldval   = NULL;
2842   Node* newval   = NULL;
2843   if (kind == LS_cmpxchg) {
2844     const bool two_slot_type = type2size[type] == 2;
2845     receiver = argument(0);  // type: oop
2846     base     = argument(1);  // type: oop
2847     offset   = argument(2);  // type: long
2848     oldval   = argument(4);  // type: oop, int, or long
2849     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2850   } else if (kind == LS_xadd || kind == LS_xchg){
2851     receiver = argument(0);  // type: oop
2852     base     = argument(1);  // type: oop
2853     offset   = argument(2);  // type: long
2854     oldval   = NULL;
2855     newval   = argument(4);  // type: oop, int, or long
2856   }
2857 
2858   // Null check receiver.
2859   receiver = null_check(receiver);
2860   if (stopped()) {
2861     return true;
2862   }
2863 
2864   // Build field offset expression.
2865   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2866   // to be plain byte offsets, which are also the same as those accepted
2867   // by oopDesc::field_base.
2868   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2869   // 32-bit machines ignore the high half of long offsets
2870   offset = ConvL2X(offset);
2871   Node* adr = make_unsafe_address(base, offset);
2872   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2873 
2874   // For CAS, unlike inline_unsafe_access, there seems no point in
2875   // trying to refine types. Just use the coarse types here.
2876   const Type *value_type = Type::get_const_basic_type(type);
2877   Compile::AliasType* alias_type = C->alias_type(adr_type);
2878   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2879 
2880   if (kind == LS_xchg && type == T_OBJECT) {
2881     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2882     if (tjp != NULL) {
2883       value_type = tjp;
2884     }
2885   }
2886 
2887   int alias_idx = C->get_alias_index(adr_type);
2888 
2889   // Memory-model-wise, a LoadStore acts like a little synchronized
2890   // block, so needs barriers on each side.  These don't translate
2891   // into actual barriers on most machines, but we still need rest of
2892   // compiler to respect ordering.
2893 
2894   insert_mem_bar(Op_MemBarRelease);
2895   insert_mem_bar(Op_MemBarCPUOrder);
2896 
2897   // 4984716: MemBars must be inserted before this
2898   //          memory node in order to avoid a false
2899   //          dependency which will confuse the scheduler.
2900   Node *mem = memory(alias_idx);
2901 
2902   // For now, we handle only those cases that actually exist: ints,
2903   // longs, and Object. Adding others should be straightforward.
2904   Node* load_store;
2905   switch(type) {
2906   case T_INT:
2907     if (kind == LS_xadd) {
2908       load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2909     } else if (kind == LS_xchg) {
2910       load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2911     } else if (kind == LS_cmpxchg) {
2912       load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval));
2913     } else {
2914       ShouldNotReachHere();
2915     }
2916     break;
2917   case T_LONG:
2918     if (kind == LS_xadd) {
2919       load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2920     } else if (kind == LS_xchg) {
2921       load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2922     } else if (kind == LS_cmpxchg) {
2923       load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2924     } else {
2925       ShouldNotReachHere();
2926     }
2927     break;
2928   case T_OBJECT:
2929     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2930     // could be delayed during Parse (for example, in adjust_map_after_if()).
2931     // Execute transformation here to avoid barrier generation in such case.
2932     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2933       newval = _gvn.makecon(TypePtr::NULL_PTR);
2934 
2935     // Reference stores need a store barrier.
2936     if (kind == LS_xchg) {
2937       // If pre-barrier must execute before the oop store, old value will require do_load here.
2938       if (!can_move_pre_barrier()) {
2939         pre_barrier(true /* do_load*/,
2940                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2941                     NULL /* pre_val*/,
2942                     T_OBJECT);
2943       } // Else move pre_barrier to use load_store value, see below.
2944     } else if (kind == LS_cmpxchg) {
2945       // Same as for newval above:
2946       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2947         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2948       }
2949       // The only known value which might get overwritten is oldval.
2950       pre_barrier(false /* do_load */,
2951                   control(), NULL, NULL, max_juint, NULL, NULL,
2952                   oldval /* pre_val */,
2953                   T_OBJECT);
2954     } else {
2955       ShouldNotReachHere();
2956     }
2957 
2958 #ifdef _LP64
2959     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2960       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2961       if (kind == LS_xchg) {
2962         load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr,
2963                                                        newval_enc, adr_type, value_type->make_narrowoop()));
2964       } else {
2965         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2966         Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2967         load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr,
2968                                                                 newval_enc, oldval_enc));
2969       }
2970     } else
2971 #endif
2972     {
2973       if (kind == LS_xchg) {
2974         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2975       } else {
2976         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2977         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2978       }
2979     }
2980     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2981     break;
2982   default:
2983     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2984     break;
2985   }
2986 
2987   // SCMemProjNodes represent the memory state of a LoadStore. Their
2988   // main role is to prevent LoadStore nodes from being optimized away
2989   // when their results aren't used.
2990   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
2991   set_memory(proj, alias_idx);
2992 
2993   if (type == T_OBJECT && kind == LS_xchg) {
2994 #ifdef _LP64
2995     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2996       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
2997     }
2998 #endif
2999     if (can_move_pre_barrier()) {
3000       // Don't need to load pre_val. The old value is returned by load_store.
3001       // The pre_barrier can execute after the xchg as long as no safepoint
3002       // gets inserted between them.
3003       pre_barrier(false /* do_load */,
3004                   control(), NULL, NULL, max_juint, NULL, NULL,
3005                   load_store /* pre_val */,
3006                   T_OBJECT);
3007     }
3008   }
3009 
3010   // Add the trailing membar surrounding the access
3011   insert_mem_bar(Op_MemBarCPUOrder);
3012   insert_mem_bar(Op_MemBarAcquire);
3013 
3014   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3015   set_result(load_store);
3016   return true;
3017 }
3018 
3019 //----------------------------inline_unsafe_ordered_store----------------------
3020 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
3021 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
3022 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
3023 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
3024   // This is another variant of inline_unsafe_access, differing in
3025   // that it always issues store-store ("release") barrier and ensures
3026   // store-atomicity (which only matters for "long").
3027 
3028   if (callee()->is_static())  return false;  // caller must have the capability!
3029 
3030 #ifndef PRODUCT
3031   {
3032     ResourceMark rm;
3033     // Check the signatures.
3034     ciSignature* sig = callee()->signature();
3035 #ifdef ASSERT
3036     BasicType rtype = sig->return_type()->basic_type();
3037     assert(rtype == T_VOID, "must return void");
3038     assert(sig->count() == 3, "has 3 arguments");
3039     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
3040     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
3041 #endif // ASSERT
3042   }
3043 #endif //PRODUCT
3044 
3045   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3046 
3047   // Get arguments:
3048   Node* receiver = argument(0);  // type: oop
3049   Node* base     = argument(1);  // type: oop
3050   Node* offset   = argument(2);  // type: long
3051   Node* val      = argument(4);  // type: oop, int, or long
3052 
3053   // Null check receiver.
3054   receiver = null_check(receiver);
3055   if (stopped()) {
3056     return true;
3057   }
3058 
3059   // Build field offset expression.
3060   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3061   // 32-bit machines ignore the high half of long offsets
3062   offset = ConvL2X(offset);
3063   Node* adr = make_unsafe_address(base, offset);
3064   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3065   const Type *value_type = Type::get_const_basic_type(type);
3066   Compile::AliasType* alias_type = C->alias_type(adr_type);
3067 
3068   insert_mem_bar(Op_MemBarRelease);
3069   insert_mem_bar(Op_MemBarCPUOrder);
3070   // Ensure that the store is atomic for longs:
3071   const bool require_atomic_access = true;
3072   Node* store;
3073   if (type == T_OBJECT) // reference stores need a store barrier.
3074     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
3075   else {
3076     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
3077   }
3078   insert_mem_bar(Op_MemBarCPUOrder);
3079   return true;
3080 }
3081 
3082 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3083   // Regardless of form, don't allow previous ld/st to move down,
3084   // then issue acquire, release, or volatile mem_bar.
3085   insert_mem_bar(Op_MemBarCPUOrder);
3086   switch(id) {
3087     case vmIntrinsics::_loadFence:
3088       insert_mem_bar(Op_LoadFence);
3089       return true;
3090     case vmIntrinsics::_storeFence:
3091       insert_mem_bar(Op_StoreFence);
3092       return true;
3093     case vmIntrinsics::_fullFence:
3094       insert_mem_bar(Op_MemBarVolatile);
3095       return true;
3096     default:
3097       fatal_unexpected_iid(id);
3098       return false;
3099   }
3100 }
3101 
3102 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3103   if (!kls->is_Con()) {
3104     return true;
3105   }
3106   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3107   if (klsptr == NULL) {
3108     return true;
3109   }
3110   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3111   // don't need a guard for a klass that is already initialized
3112   return !ik->is_initialized();
3113 }
3114 
3115 //----------------------------inline_unsafe_allocate---------------------------
3116 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3117 bool LibraryCallKit::inline_unsafe_allocate() {
3118   if (callee()->is_static())  return false;  // caller must have the capability!
3119 
3120   null_check_receiver();  // null-check, then ignore
3121   Node* cls = null_check(argument(1));
3122   if (stopped())  return true;
3123 
3124   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3125   kls = null_check(kls);
3126   if (stopped())  return true;  // argument was like int.class
3127 
3128   Node* test = NULL;
3129   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3130     // Note:  The argument might still be an illegal value like
3131     // Serializable.class or Object[].class.   The runtime will handle it.
3132     // But we must make an explicit check for initialization.
3133     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3134     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3135     // can generate code to load it as unsigned byte.
3136     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3137     Node* bits = intcon(InstanceKlass::fully_initialized);
3138     test = _gvn.transform(new SubINode(inst, bits));
3139     // The 'test' is non-zero if we need to take a slow path.
3140   }
3141 
3142   Node* obj = new_instance(kls, test);
3143   set_result(obj);
3144   return true;
3145 }
3146 
3147 #ifdef TRACE_HAVE_INTRINSICS
3148 /*
3149  * oop -> myklass
3150  * myklass->trace_id |= USED
3151  * return myklass->trace_id & ~0x3
3152  */
3153 bool LibraryCallKit::inline_native_classID() {
3154   null_check_receiver();  // null-check, then ignore
3155   Node* cls = null_check(argument(1), T_OBJECT);
3156   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3157   kls = null_check(kls, T_OBJECT);
3158   ByteSize offset = TRACE_ID_OFFSET;
3159   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3160   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3161   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3162   Node* andl = _gvn.transform(new AndLNode(tvalue, bits));
3163   Node* clsused = longcon(0x01l); // set the class bit
3164   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
3165 
3166   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3167   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3168   set_result(andl);
3169   return true;
3170 }
3171 
3172 bool LibraryCallKit::inline_native_threadID() {
3173   Node* tls_ptr = NULL;
3174   Node* cur_thr = generate_current_thread(tls_ptr);
3175   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3176   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3177   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3178 
3179   Node* threadid = NULL;
3180   size_t thread_id_size = OSThread::thread_id_size();
3181   if (thread_id_size == (size_t) BytesPerLong) {
3182     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3183   } else if (thread_id_size == (size_t) BytesPerInt) {
3184     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3185   } else {
3186     ShouldNotReachHere();
3187   }
3188   set_result(threadid);
3189   return true;
3190 }
3191 #endif
3192 
3193 //------------------------inline_native_time_funcs--------------
3194 // inline code for System.currentTimeMillis() and System.nanoTime()
3195 // these have the same type and signature
3196 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3197   const TypeFunc* tf = OptoRuntime::void_long_Type();
3198   const TypePtr* no_memory_effects = NULL;
3199   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3200   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3201 #ifdef ASSERT
3202   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3203   assert(value_top == top(), "second value must be top");
3204 #endif
3205   set_result(value);
3206   return true;
3207 }
3208 
3209 //------------------------inline_native_currentThread------------------
3210 bool LibraryCallKit::inline_native_currentThread() {
3211   Node* junk = NULL;
3212   set_result(generate_current_thread(junk));
3213   return true;
3214 }
3215 
3216 //------------------------inline_native_isInterrupted------------------
3217 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3218 bool LibraryCallKit::inline_native_isInterrupted() {
3219   // Add a fast path to t.isInterrupted(clear_int):
3220   //   (t == Thread.current() &&
3221   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3222   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3223   // So, in the common case that the interrupt bit is false,
3224   // we avoid making a call into the VM.  Even if the interrupt bit
3225   // is true, if the clear_int argument is false, we avoid the VM call.
3226   // However, if the receiver is not currentThread, we must call the VM,
3227   // because there must be some locking done around the operation.
3228 
3229   // We only go to the fast case code if we pass two guards.
3230   // Paths which do not pass are accumulated in the slow_region.
3231 
3232   enum {
3233     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3234     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3235     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3236     PATH_LIMIT
3237   };
3238 
3239   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3240   // out of the function.
3241   insert_mem_bar(Op_MemBarCPUOrder);
3242 
3243   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3244   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3245 
3246   RegionNode* slow_region = new RegionNode(1);
3247   record_for_igvn(slow_region);
3248 
3249   // (a) Receiving thread must be the current thread.
3250   Node* rec_thr = argument(0);
3251   Node* tls_ptr = NULL;
3252   Node* cur_thr = generate_current_thread(tls_ptr);
3253   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3254   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3255 
3256   generate_slow_guard(bol_thr, slow_region);
3257 
3258   // (b) Interrupt bit on TLS must be false.
3259   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3260   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3261   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3262 
3263   // Set the control input on the field _interrupted read to prevent it floating up.
3264   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3265   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3266   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3267 
3268   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3269 
3270   // First fast path:  if (!TLS._interrupted) return false;
3271   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3272   result_rgn->init_req(no_int_result_path, false_bit);
3273   result_val->init_req(no_int_result_path, intcon(0));
3274 
3275   // drop through to next case
3276   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3277 
3278 #ifndef TARGET_OS_FAMILY_windows
3279   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3280   Node* clr_arg = argument(1);
3281   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3282   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3283   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3284 
3285   // Second fast path:  ... else if (!clear_int) return true;
3286   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3287   result_rgn->init_req(no_clear_result_path, false_arg);
3288   result_val->init_req(no_clear_result_path, intcon(1));
3289 
3290   // drop through to next case
3291   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3292 #else
3293   // To return true on Windows you must read the _interrupted field
3294   // and check the the event state i.e. take the slow path.
3295 #endif // TARGET_OS_FAMILY_windows
3296 
3297   // (d) Otherwise, go to the slow path.
3298   slow_region->add_req(control());
3299   set_control( _gvn.transform(slow_region));
3300 
3301   if (stopped()) {
3302     // There is no slow path.
3303     result_rgn->init_req(slow_result_path, top());
3304     result_val->init_req(slow_result_path, top());
3305   } else {
3306     // non-virtual because it is a private non-static
3307     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3308 
3309     Node* slow_val = set_results_for_java_call(slow_call);
3310     // this->control() comes from set_results_for_java_call
3311 
3312     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3313     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3314 
3315     // These two phis are pre-filled with copies of of the fast IO and Memory
3316     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3317     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3318 
3319     result_rgn->init_req(slow_result_path, control());
3320     result_io ->init_req(slow_result_path, i_o());
3321     result_mem->init_req(slow_result_path, reset_memory());
3322     result_val->init_req(slow_result_path, slow_val);
3323 
3324     set_all_memory(_gvn.transform(result_mem));
3325     set_i_o(       _gvn.transform(result_io));
3326   }
3327 
3328   C->set_has_split_ifs(true); // Has chance for split-if optimization
3329   set_result(result_rgn, result_val);
3330   return true;
3331 }
3332 
3333 //---------------------------load_mirror_from_klass----------------------------
3334 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3335 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3336   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3337   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3338 }
3339 
3340 //-----------------------load_klass_from_mirror_common-------------------------
3341 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3342 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3343 // and branch to the given path on the region.
3344 // If never_see_null, take an uncommon trap on null, so we can optimistically
3345 // compile for the non-null case.
3346 // If the region is NULL, force never_see_null = true.
3347 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3348                                                     bool never_see_null,
3349                                                     RegionNode* region,
3350                                                     int null_path,
3351                                                     int offset) {
3352   if (region == NULL)  never_see_null = true;
3353   Node* p = basic_plus_adr(mirror, offset);
3354   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3355   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3356   Node* null_ctl = top();
3357   kls = null_check_oop(kls, &null_ctl, never_see_null);
3358   if (region != NULL) {
3359     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3360     region->init_req(null_path, null_ctl);
3361   } else {
3362     assert(null_ctl == top(), "no loose ends");
3363   }
3364   return kls;
3365 }
3366 
3367 //--------------------(inline_native_Class_query helpers)---------------------
3368 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3369 // Fall through if (mods & mask) == bits, take the guard otherwise.
3370 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3371   // Branch around if the given klass has the given modifier bit set.
3372   // Like generate_guard, adds a new path onto the region.
3373   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3374   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3375   Node* mask = intcon(modifier_mask);
3376   Node* bits = intcon(modifier_bits);
3377   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3378   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3379   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3380   return generate_fair_guard(bol, region);
3381 }
3382 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3383   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3384 }
3385 
3386 //-------------------------inline_native_Class_query-------------------
3387 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3388   const Type* return_type = TypeInt::BOOL;
3389   Node* prim_return_value = top();  // what happens if it's a primitive class?
3390   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3391   bool expect_prim = false;     // most of these guys expect to work on refs
3392 
3393   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3394 
3395   Node* mirror = argument(0);
3396   Node* obj    = top();
3397 
3398   switch (id) {
3399   case vmIntrinsics::_isInstance:
3400     // nothing is an instance of a primitive type
3401     prim_return_value = intcon(0);
3402     obj = argument(1);
3403     break;
3404   case vmIntrinsics::_getModifiers:
3405     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3406     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3407     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3408     break;
3409   case vmIntrinsics::_isInterface:
3410     prim_return_value = intcon(0);
3411     break;
3412   case vmIntrinsics::_isArray:
3413     prim_return_value = intcon(0);
3414     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3415     break;
3416   case vmIntrinsics::_isPrimitive:
3417     prim_return_value = intcon(1);
3418     expect_prim = true;  // obviously
3419     break;
3420   case vmIntrinsics::_getSuperclass:
3421     prim_return_value = null();
3422     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3423     break;
3424   case vmIntrinsics::_getClassAccessFlags:
3425     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3426     return_type = TypeInt::INT;  // not bool!  6297094
3427     break;
3428   default:
3429     fatal_unexpected_iid(id);
3430     break;
3431   }
3432 
3433   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3434   if (mirror_con == NULL)  return false;  // cannot happen?
3435 
3436 #ifndef PRODUCT
3437   if (C->print_intrinsics() || C->print_inlining()) {
3438     ciType* k = mirror_con->java_mirror_type();
3439     if (k) {
3440       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3441       k->print_name();
3442       tty->cr();
3443     }
3444   }
3445 #endif
3446 
3447   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3448   RegionNode* region = new RegionNode(PATH_LIMIT);
3449   record_for_igvn(region);
3450   PhiNode* phi = new PhiNode(region, return_type);
3451 
3452   // The mirror will never be null of Reflection.getClassAccessFlags, however
3453   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3454   // if it is. See bug 4774291.
3455 
3456   // For Reflection.getClassAccessFlags(), the null check occurs in
3457   // the wrong place; see inline_unsafe_access(), above, for a similar
3458   // situation.
3459   mirror = null_check(mirror);
3460   // If mirror or obj is dead, only null-path is taken.
3461   if (stopped())  return true;
3462 
3463   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3464 
3465   // Now load the mirror's klass metaobject, and null-check it.
3466   // Side-effects region with the control path if the klass is null.
3467   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3468   // If kls is null, we have a primitive mirror.
3469   phi->init_req(_prim_path, prim_return_value);
3470   if (stopped()) { set_result(region, phi); return true; }
3471   bool safe_for_replace = (region->in(_prim_path) == top());
3472 
3473   Node* p;  // handy temp
3474   Node* null_ctl;
3475 
3476   // Now that we have the non-null klass, we can perform the real query.
3477   // For constant classes, the query will constant-fold in LoadNode::Value.
3478   Node* query_value = top();
3479   switch (id) {
3480   case vmIntrinsics::_isInstance:
3481     // nothing is an instance of a primitive type
3482     query_value = gen_instanceof(obj, kls, safe_for_replace);
3483     break;
3484 
3485   case vmIntrinsics::_getModifiers:
3486     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3487     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3488     break;
3489 
3490   case vmIntrinsics::_isInterface:
3491     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3492     if (generate_interface_guard(kls, region) != NULL)
3493       // A guard was added.  If the guard is taken, it was an interface.
3494       phi->add_req(intcon(1));
3495     // If we fall through, it's a plain class.
3496     query_value = intcon(0);
3497     break;
3498 
3499   case vmIntrinsics::_isArray:
3500     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3501     if (generate_array_guard(kls, region) != NULL)
3502       // A guard was added.  If the guard is taken, it was an array.
3503       phi->add_req(intcon(1));
3504     // If we fall through, it's a plain class.
3505     query_value = intcon(0);
3506     break;
3507 
3508   case vmIntrinsics::_isPrimitive:
3509     query_value = intcon(0); // "normal" path produces false
3510     break;
3511 
3512   case vmIntrinsics::_getSuperclass:
3513     // The rules here are somewhat unfortunate, but we can still do better
3514     // with random logic than with a JNI call.
3515     // Interfaces store null or Object as _super, but must report null.
3516     // Arrays store an intermediate super as _super, but must report Object.
3517     // Other types can report the actual _super.
3518     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3519     if (generate_interface_guard(kls, region) != NULL)
3520       // A guard was added.  If the guard is taken, it was an interface.
3521       phi->add_req(null());
3522     if (generate_array_guard(kls, region) != NULL)
3523       // A guard was added.  If the guard is taken, it was an array.
3524       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3525     // If we fall through, it's a plain class.  Get its _super.
3526     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3527     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3528     null_ctl = top();
3529     kls = null_check_oop(kls, &null_ctl);
3530     if (null_ctl != top()) {
3531       // If the guard is taken, Object.superClass is null (both klass and mirror).
3532       region->add_req(null_ctl);
3533       phi   ->add_req(null());
3534     }
3535     if (!stopped()) {
3536       query_value = load_mirror_from_klass(kls);
3537     }
3538     break;
3539 
3540   case vmIntrinsics::_getClassAccessFlags:
3541     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3542     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3543     break;
3544 
3545   default:
3546     fatal_unexpected_iid(id);
3547     break;
3548   }
3549 
3550   // Fall-through is the normal case of a query to a real class.
3551   phi->init_req(1, query_value);
3552   region->init_req(1, control());
3553 
3554   C->set_has_split_ifs(true); // Has chance for split-if optimization
3555   set_result(region, phi);
3556   return true;
3557 }
3558 
3559 //-------------------------inline_Class_cast-------------------
3560 bool LibraryCallKit::inline_Class_cast() {
3561   Node* mirror = argument(0); // Class
3562   Node* obj    = argument(1);
3563   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3564   if (mirror_con == NULL) {
3565     return false;  // dead path (mirror->is_top()).
3566   }
3567   if (obj == NULL || obj->is_top()) {
3568     return false;  // dead path
3569   }
3570   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3571 
3572   // First, see if Class.cast() can be folded statically.
3573   // java_mirror_type() returns non-null for compile-time Class constants.
3574   ciType* tm = mirror_con->java_mirror_type();
3575   if (tm != NULL && tm->is_klass() &&
3576       tp != NULL && tp->klass() != NULL) {
3577     if (!tp->klass()->is_loaded()) {
3578       // Don't use intrinsic when class is not loaded.
3579       return false;
3580     } else {
3581       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3582       if (static_res == Compile::SSC_always_true) {
3583         // isInstance() is true - fold the code.
3584         set_result(obj);
3585         return true;
3586       } else if (static_res == Compile::SSC_always_false) {
3587         // Don't use intrinsic, have to throw ClassCastException.
3588         // If the reference is null, the non-intrinsic bytecode will
3589         // be optimized appropriately.
3590         return false;
3591       }
3592     }
3593   }
3594 
3595   // Bailout intrinsic and do normal inlining if exception path is frequent.
3596   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3597     return false;
3598   }
3599 
3600   // Generate dynamic checks.
3601   // Class.cast() is java implementation of _checkcast bytecode.
3602   // Do checkcast (Parse::do_checkcast()) optimizations here.
3603 
3604   mirror = null_check(mirror);
3605   // If mirror is dead, only null-path is taken.
3606   if (stopped()) {
3607     return true;
3608   }
3609 
3610   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3611   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3612   RegionNode* region = new RegionNode(PATH_LIMIT);
3613   record_for_igvn(region);
3614 
3615   // Now load the mirror's klass metaobject, and null-check it.
3616   // If kls is null, we have a primitive mirror and
3617   // nothing is an instance of a primitive type.
3618   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3619 
3620   Node* res = top();
3621   if (!stopped()) {
3622     Node* bad_type_ctrl = top();
3623     // Do checkcast optimizations.
3624     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3625     region->init_req(_bad_type_path, bad_type_ctrl);
3626   }
3627   if (region->in(_prim_path) != top() ||
3628       region->in(_bad_type_path) != top()) {
3629     // Let Interpreter throw ClassCastException.
3630     PreserveJVMState pjvms(this);
3631     set_control(_gvn.transform(region));
3632     uncommon_trap(Deoptimization::Reason_intrinsic,
3633                   Deoptimization::Action_maybe_recompile);
3634   }
3635   if (!stopped()) {
3636     set_result(res);
3637   }
3638   return true;
3639 }
3640 
3641 
3642 //--------------------------inline_native_subtype_check------------------------
3643 // This intrinsic takes the JNI calls out of the heart of
3644 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3645 bool LibraryCallKit::inline_native_subtype_check() {
3646   // Pull both arguments off the stack.
3647   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3648   args[0] = argument(0);
3649   args[1] = argument(1);
3650   Node* klasses[2];             // corresponding Klasses: superk, subk
3651   klasses[0] = klasses[1] = top();
3652 
3653   enum {
3654     // A full decision tree on {superc is prim, subc is prim}:
3655     _prim_0_path = 1,           // {P,N} => false
3656                                 // {P,P} & superc!=subc => false
3657     _prim_same_path,            // {P,P} & superc==subc => true
3658     _prim_1_path,               // {N,P} => false
3659     _ref_subtype_path,          // {N,N} & subtype check wins => true
3660     _both_ref_path,             // {N,N} & subtype check loses => false
3661     PATH_LIMIT
3662   };
3663 
3664   RegionNode* region = new RegionNode(PATH_LIMIT);
3665   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3666   record_for_igvn(region);
3667 
3668   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3669   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3670   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3671 
3672   // First null-check both mirrors and load each mirror's klass metaobject.
3673   int which_arg;
3674   for (which_arg = 0; which_arg <= 1; which_arg++) {
3675     Node* arg = args[which_arg];
3676     arg = null_check(arg);
3677     if (stopped())  break;
3678     args[which_arg] = arg;
3679 
3680     Node* p = basic_plus_adr(arg, class_klass_offset);
3681     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3682     klasses[which_arg] = _gvn.transform(kls);
3683   }
3684 
3685   // Having loaded both klasses, test each for null.
3686   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3687   for (which_arg = 0; which_arg <= 1; which_arg++) {
3688     Node* kls = klasses[which_arg];
3689     Node* null_ctl = top();
3690     kls = null_check_oop(kls, &null_ctl, never_see_null);
3691     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3692     region->init_req(prim_path, null_ctl);
3693     if (stopped())  break;
3694     klasses[which_arg] = kls;
3695   }
3696 
3697   if (!stopped()) {
3698     // now we have two reference types, in klasses[0..1]
3699     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3700     Node* superk = klasses[0];  // the receiver
3701     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3702     // now we have a successful reference subtype check
3703     region->set_req(_ref_subtype_path, control());
3704   }
3705 
3706   // If both operands are primitive (both klasses null), then
3707   // we must return true when they are identical primitives.
3708   // It is convenient to test this after the first null klass check.
3709   set_control(region->in(_prim_0_path)); // go back to first null check
3710   if (!stopped()) {
3711     // Since superc is primitive, make a guard for the superc==subc case.
3712     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3713     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3714     generate_guard(bol_eq, region, PROB_FAIR);
3715     if (region->req() == PATH_LIMIT+1) {
3716       // A guard was added.  If the added guard is taken, superc==subc.
3717       region->swap_edges(PATH_LIMIT, _prim_same_path);
3718       region->del_req(PATH_LIMIT);
3719     }
3720     region->set_req(_prim_0_path, control()); // Not equal after all.
3721   }
3722 
3723   // these are the only paths that produce 'true':
3724   phi->set_req(_prim_same_path,   intcon(1));
3725   phi->set_req(_ref_subtype_path, intcon(1));
3726 
3727   // pull together the cases:
3728   assert(region->req() == PATH_LIMIT, "sane region");
3729   for (uint i = 1; i < region->req(); i++) {
3730     Node* ctl = region->in(i);
3731     if (ctl == NULL || ctl == top()) {
3732       region->set_req(i, top());
3733       phi   ->set_req(i, top());
3734     } else if (phi->in(i) == NULL) {
3735       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3736     }
3737   }
3738 
3739   set_control(_gvn.transform(region));
3740   set_result(_gvn.transform(phi));
3741   return true;
3742 }
3743 
3744 //---------------------generate_array_guard_common------------------------
3745 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3746                                                   bool obj_array, bool not_array) {
3747 
3748   if (stopped()) {
3749     return NULL;
3750   }
3751 
3752   // If obj_array/non_array==false/false:
3753   // Branch around if the given klass is in fact an array (either obj or prim).
3754   // If obj_array/non_array==false/true:
3755   // Branch around if the given klass is not an array klass of any kind.
3756   // If obj_array/non_array==true/true:
3757   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3758   // If obj_array/non_array==true/false:
3759   // Branch around if the kls is an oop array (Object[] or subtype)
3760   //
3761   // Like generate_guard, adds a new path onto the region.
3762   jint  layout_con = 0;
3763   Node* layout_val = get_layout_helper(kls, layout_con);
3764   if (layout_val == NULL) {
3765     bool query = (obj_array
3766                   ? Klass::layout_helper_is_objArray(layout_con)
3767                   : Klass::layout_helper_is_array(layout_con));
3768     if (query == not_array) {
3769       return NULL;                       // never a branch
3770     } else {                             // always a branch
3771       Node* always_branch = control();
3772       if (region != NULL)
3773         region->add_req(always_branch);
3774       set_control(top());
3775       return always_branch;
3776     }
3777   }
3778   // Now test the correct condition.
3779   jint  nval = (obj_array
3780                 ? ((jint)Klass::_lh_array_tag_type_value
3781                    <<    Klass::_lh_array_tag_shift)
3782                 : Klass::_lh_neutral_value);
3783   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3784   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3785   // invert the test if we are looking for a non-array
3786   if (not_array)  btest = BoolTest(btest).negate();
3787   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3788   return generate_fair_guard(bol, region);
3789 }
3790 
3791 
3792 //-----------------------inline_native_newArray--------------------------
3793 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3794 bool LibraryCallKit::inline_native_newArray() {
3795   Node* mirror    = argument(0);
3796   Node* count_val = argument(1);
3797 
3798   mirror = null_check(mirror);
3799   // If mirror or obj is dead, only null-path is taken.
3800   if (stopped())  return true;
3801 
3802   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3803   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3804   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3805   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3806   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3807 
3808   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3809   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3810                                                   result_reg, _slow_path);
3811   Node* normal_ctl   = control();
3812   Node* no_array_ctl = result_reg->in(_slow_path);
3813 
3814   // Generate code for the slow case.  We make a call to newArray().
3815   set_control(no_array_ctl);
3816   if (!stopped()) {
3817     // Either the input type is void.class, or else the
3818     // array klass has not yet been cached.  Either the
3819     // ensuing call will throw an exception, or else it
3820     // will cache the array klass for next time.
3821     PreserveJVMState pjvms(this);
3822     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3823     Node* slow_result = set_results_for_java_call(slow_call);
3824     // this->control() comes from set_results_for_java_call
3825     result_reg->set_req(_slow_path, control());
3826     result_val->set_req(_slow_path, slow_result);
3827     result_io ->set_req(_slow_path, i_o());
3828     result_mem->set_req(_slow_path, reset_memory());
3829   }
3830 
3831   set_control(normal_ctl);
3832   if (!stopped()) {
3833     // Normal case:  The array type has been cached in the java.lang.Class.
3834     // The following call works fine even if the array type is polymorphic.
3835     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3836     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3837     result_reg->init_req(_normal_path, control());
3838     result_val->init_req(_normal_path, obj);
3839     result_io ->init_req(_normal_path, i_o());
3840     result_mem->init_req(_normal_path, reset_memory());
3841   }
3842 
3843   // Return the combined state.
3844   set_i_o(        _gvn.transform(result_io)  );
3845   set_all_memory( _gvn.transform(result_mem));
3846 
3847   C->set_has_split_ifs(true); // Has chance for split-if optimization
3848   set_result(result_reg, result_val);
3849   return true;
3850 }
3851 
3852 //----------------------inline_native_getLength--------------------------
3853 // public static native int java.lang.reflect.Array.getLength(Object array);
3854 bool LibraryCallKit::inline_native_getLength() {
3855   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3856 
3857   Node* array = null_check(argument(0));
3858   // If array is dead, only null-path is taken.
3859   if (stopped())  return true;
3860 
3861   // Deoptimize if it is a non-array.
3862   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3863 
3864   if (non_array != NULL) {
3865     PreserveJVMState pjvms(this);
3866     set_control(non_array);
3867     uncommon_trap(Deoptimization::Reason_intrinsic,
3868                   Deoptimization::Action_maybe_recompile);
3869   }
3870 
3871   // If control is dead, only non-array-path is taken.
3872   if (stopped())  return true;
3873 
3874   // The works fine even if the array type is polymorphic.
3875   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3876   Node* result = load_array_length(array);
3877 
3878   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3879   set_result(result);
3880   return true;
3881 }
3882 
3883 //------------------------inline_array_copyOf----------------------------
3884 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3885 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3886 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3887   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3888 
3889   // Get the arguments.
3890   Node* original          = argument(0);
3891   Node* start             = is_copyOfRange? argument(1): intcon(0);
3892   Node* end               = is_copyOfRange? argument(2): argument(1);
3893   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3894 
3895   Node* newcopy;
3896 
3897   // Set the original stack and the reexecute bit for the interpreter to reexecute
3898   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3899   { PreserveReexecuteState preexecs(this);
3900     jvms()->set_should_reexecute(true);
3901 
3902     array_type_mirror = null_check(array_type_mirror);
3903     original          = null_check(original);
3904 
3905     // Check if a null path was taken unconditionally.
3906     if (stopped())  return true;
3907 
3908     Node* orig_length = load_array_length(original);
3909 
3910     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3911     klass_node = null_check(klass_node);
3912 
3913     RegionNode* bailout = new RegionNode(1);
3914     record_for_igvn(bailout);
3915 
3916     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3917     // Bail out if that is so.
3918     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3919     if (not_objArray != NULL) {
3920       // Improve the klass node's type from the new optimistic assumption:
3921       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3922       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3923       Node* cast = new CastPPNode(klass_node, akls);
3924       cast->init_req(0, control());
3925       klass_node = _gvn.transform(cast);
3926     }
3927 
3928     // Bail out if either start or end is negative.
3929     generate_negative_guard(start, bailout, &start);
3930     generate_negative_guard(end,   bailout, &end);
3931 
3932     Node* length = end;
3933     if (_gvn.type(start) != TypeInt::ZERO) {
3934       length = _gvn.transform(new SubINode(end, start));
3935     }
3936 
3937     // Bail out if length is negative.
3938     // Without this the new_array would throw
3939     // NegativeArraySizeException but IllegalArgumentException is what
3940     // should be thrown
3941     generate_negative_guard(length, bailout, &length);
3942 
3943     if (bailout->req() > 1) {
3944       PreserveJVMState pjvms(this);
3945       set_control(_gvn.transform(bailout));
3946       uncommon_trap(Deoptimization::Reason_intrinsic,
3947                     Deoptimization::Action_maybe_recompile);
3948     }
3949 
3950     if (!stopped()) {
3951       // How many elements will we copy from the original?
3952       // The answer is MinI(orig_length - start, length).
3953       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3954       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3955 
3956       // Generate a direct call to the right arraycopy function(s).
3957       // We know the copy is disjoint but we might not know if the
3958       // oop stores need checking.
3959       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3960       // This will fail a store-check if x contains any non-nulls.
3961 
3962       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
3963       // loads/stores but it is legal only if we're sure the
3964       // Arrays.copyOf would succeed. So we need all input arguments
3965       // to the copyOf to be validated, including that the copy to the
3966       // new array won't trigger an ArrayStoreException. That subtype
3967       // check can be optimized if we know something on the type of
3968       // the input array from type speculation.
3969       if (_gvn.type(klass_node)->singleton()) {
3970         ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
3971         ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
3972 
3973         int test = C->static_subtype_check(superk, subk);
3974         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
3975           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
3976           if (t_original->speculative_type() != NULL) {
3977             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
3978           }
3979         }
3980       }
3981 
3982       bool validated = false;
3983       // Reason_class_check rather than Reason_intrinsic because we
3984       // want to intrinsify even if this traps.
3985       if (!too_many_traps(Deoptimization::Reason_class_check)) {
3986         Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
3987                                                    klass_node);
3988 
3989         if (not_subtype_ctrl != top()) {
3990           PreserveJVMState pjvms(this);
3991           set_control(not_subtype_ctrl);
3992           uncommon_trap(Deoptimization::Reason_class_check,
3993                         Deoptimization::Action_make_not_entrant);
3994           assert(stopped(), "Should be stopped");
3995         }
3996         validated = true;
3997       }
3998 
3999       if (!stopped()) {
4000         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4001 
4002         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true,
4003                                                 load_object_klass(original), klass_node);
4004         if (!is_copyOfRange) {
4005           ac->set_copyof(validated);
4006         } else {
4007           ac->set_copyofrange(validated);
4008         }
4009         Node* n = _gvn.transform(ac);
4010         if (n == ac) {
4011           ac->connect_outputs(this);
4012         } else {
4013           assert(validated, "shouldn't transform if all arguments not validated");
4014           set_all_memory(n);
4015         }
4016       }
4017     }
4018   } // original reexecute is set back here
4019 
4020   C->set_has_split_ifs(true); // Has chance for split-if optimization
4021   if (!stopped()) {
4022     set_result(newcopy);
4023   }
4024   return true;
4025 }
4026 
4027 
4028 //----------------------generate_virtual_guard---------------------------
4029 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4030 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4031                                              RegionNode* slow_region) {
4032   ciMethod* method = callee();
4033   int vtable_index = method->vtable_index();
4034   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4035          err_msg_res("bad index %d", vtable_index));
4036   // Get the Method* out of the appropriate vtable entry.
4037   int entry_offset  = (InstanceKlass::vtable_start_offset() +
4038                      vtable_index*vtableEntry::size()) * wordSize +
4039                      vtableEntry::method_offset_in_bytes();
4040   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4041   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4042 
4043   // Compare the target method with the expected method (e.g., Object.hashCode).
4044   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4045 
4046   Node* native_call = makecon(native_call_addr);
4047   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4048   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4049 
4050   return generate_slow_guard(test_native, slow_region);
4051 }
4052 
4053 //-----------------------generate_method_call----------------------------
4054 // Use generate_method_call to make a slow-call to the real
4055 // method if the fast path fails.  An alternative would be to
4056 // use a stub like OptoRuntime::slow_arraycopy_Java.
4057 // This only works for expanding the current library call,
4058 // not another intrinsic.  (E.g., don't use this for making an
4059 // arraycopy call inside of the copyOf intrinsic.)
4060 CallJavaNode*
4061 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4062   // When compiling the intrinsic method itself, do not use this technique.
4063   guarantee(callee() != C->method(), "cannot make slow-call to self");
4064 
4065   ciMethod* method = callee();
4066   // ensure the JVMS we have will be correct for this call
4067   guarantee(method_id == method->intrinsic_id(), "must match");
4068 
4069   const TypeFunc* tf = TypeFunc::make(method);
4070   CallJavaNode* slow_call;
4071   if (is_static) {
4072     assert(!is_virtual, "");
4073     slow_call = new CallStaticJavaNode(C, tf,
4074                            SharedRuntime::get_resolve_static_call_stub(),
4075                            method, bci());
4076   } else if (is_virtual) {
4077     null_check_receiver();
4078     int vtable_index = Method::invalid_vtable_index;
4079     if (UseInlineCaches) {
4080       // Suppress the vtable call
4081     } else {
4082       // hashCode and clone are not a miranda methods,
4083       // so the vtable index is fixed.
4084       // No need to use the linkResolver to get it.
4085        vtable_index = method->vtable_index();
4086        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4087               err_msg_res("bad index %d", vtable_index));
4088     }
4089     slow_call = new CallDynamicJavaNode(tf,
4090                           SharedRuntime::get_resolve_virtual_call_stub(),
4091                           method, vtable_index, bci());
4092   } else {  // neither virtual nor static:  opt_virtual
4093     null_check_receiver();
4094     slow_call = new CallStaticJavaNode(C, tf,
4095                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4096                                 method, bci());
4097     slow_call->set_optimized_virtual(true);
4098   }
4099   set_arguments_for_java_call(slow_call);
4100   set_edges_for_java_call(slow_call);
4101   return slow_call;
4102 }
4103 
4104 
4105 /**
4106  * Build special case code for calls to hashCode on an object. This call may
4107  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4108  * slightly different code.
4109  */
4110 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4111   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4112   assert(!(is_virtual && is_static), "either virtual, special, or static");
4113 
4114   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4115 
4116   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4117   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4118   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4119   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4120   Node* obj = NULL;
4121   if (!is_static) {
4122     // Check for hashing null object
4123     obj = null_check_receiver();
4124     if (stopped())  return true;        // unconditionally null
4125     result_reg->init_req(_null_path, top());
4126     result_val->init_req(_null_path, top());
4127   } else {
4128     // Do a null check, and return zero if null.
4129     // System.identityHashCode(null) == 0
4130     obj = argument(0);
4131     Node* null_ctl = top();
4132     obj = null_check_oop(obj, &null_ctl);
4133     result_reg->init_req(_null_path, null_ctl);
4134     result_val->init_req(_null_path, _gvn.intcon(0));
4135   }
4136 
4137   // Unconditionally null?  Then return right away.
4138   if (stopped()) {
4139     set_control( result_reg->in(_null_path));
4140     if (!stopped())
4141       set_result(result_val->in(_null_path));
4142     return true;
4143   }
4144 
4145   // We only go to the fast case code if we pass a number of guards.  The
4146   // paths which do not pass are accumulated in the slow_region.
4147   RegionNode* slow_region = new RegionNode(1);
4148   record_for_igvn(slow_region);
4149 
4150   // If this is a virtual call, we generate a funny guard.  We pull out
4151   // the vtable entry corresponding to hashCode() from the target object.
4152   // If the target method which we are calling happens to be the native
4153   // Object hashCode() method, we pass the guard.  We do not need this
4154   // guard for non-virtual calls -- the caller is known to be the native
4155   // Object hashCode().
4156   if (is_virtual) {
4157     // After null check, get the object's klass.
4158     Node* obj_klass = load_object_klass(obj);
4159     generate_virtual_guard(obj_klass, slow_region);
4160   }
4161 
4162   // Get the header out of the object, use LoadMarkNode when available
4163   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4164   // The control of the load must be NULL. Otherwise, the load can move before
4165   // the null check after castPP removal.
4166   Node* no_ctrl = NULL;
4167   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4168 
4169   // Test the header to see if it is unlocked.
4170   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4171   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4172   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4173   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4174   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4175 
4176   generate_slow_guard(test_unlocked, slow_region);
4177 
4178   // Get the hash value and check to see that it has been properly assigned.
4179   // We depend on hash_mask being at most 32 bits and avoid the use of
4180   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4181   // vm: see markOop.hpp.
4182   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4183   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4184   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4185   // This hack lets the hash bits live anywhere in the mark object now, as long
4186   // as the shift drops the relevant bits into the low 32 bits.  Note that
4187   // Java spec says that HashCode is an int so there's no point in capturing
4188   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4189   hshifted_header      = ConvX2I(hshifted_header);
4190   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4191 
4192   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4193   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4194   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4195 
4196   generate_slow_guard(test_assigned, slow_region);
4197 
4198   Node* init_mem = reset_memory();
4199   // fill in the rest of the null path:
4200   result_io ->init_req(_null_path, i_o());
4201   result_mem->init_req(_null_path, init_mem);
4202 
4203   result_val->init_req(_fast_path, hash_val);
4204   result_reg->init_req(_fast_path, control());
4205   result_io ->init_req(_fast_path, i_o());
4206   result_mem->init_req(_fast_path, init_mem);
4207 
4208   // Generate code for the slow case.  We make a call to hashCode().
4209   set_control(_gvn.transform(slow_region));
4210   if (!stopped()) {
4211     // No need for PreserveJVMState, because we're using up the present state.
4212     set_all_memory(init_mem);
4213     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4214     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4215     Node* slow_result = set_results_for_java_call(slow_call);
4216     // this->control() comes from set_results_for_java_call
4217     result_reg->init_req(_slow_path, control());
4218     result_val->init_req(_slow_path, slow_result);
4219     result_io  ->set_req(_slow_path, i_o());
4220     result_mem ->set_req(_slow_path, reset_memory());
4221   }
4222 
4223   // Return the combined state.
4224   set_i_o(        _gvn.transform(result_io)  );
4225   set_all_memory( _gvn.transform(result_mem));
4226 
4227   set_result(result_reg, result_val);
4228   return true;
4229 }
4230 
4231 //---------------------------inline_native_getClass----------------------------
4232 // public final native Class<?> java.lang.Object.getClass();
4233 //
4234 // Build special case code for calls to getClass on an object.
4235 bool LibraryCallKit::inline_native_getClass() {
4236   Node* obj = null_check_receiver();
4237   if (stopped())  return true;
4238   set_result(load_mirror_from_klass(load_object_klass(obj)));
4239   return true;
4240 }
4241 
4242 //-----------------inline_native_Reflection_getCallerClass---------------------
4243 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4244 //
4245 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4246 //
4247 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4248 // in that it must skip particular security frames and checks for
4249 // caller sensitive methods.
4250 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4251 #ifndef PRODUCT
4252   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4253     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4254   }
4255 #endif
4256 
4257   if (!jvms()->has_method()) {
4258 #ifndef PRODUCT
4259     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4260       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4261     }
4262 #endif
4263     return false;
4264   }
4265 
4266   // Walk back up the JVM state to find the caller at the required
4267   // depth.
4268   JVMState* caller_jvms = jvms();
4269 
4270   // Cf. JVM_GetCallerClass
4271   // NOTE: Start the loop at depth 1 because the current JVM state does
4272   // not include the Reflection.getCallerClass() frame.
4273   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4274     ciMethod* m = caller_jvms->method();
4275     switch (n) {
4276     case 0:
4277       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4278       break;
4279     case 1:
4280       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4281       if (!m->caller_sensitive()) {
4282 #ifndef PRODUCT
4283         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4284           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4285         }
4286 #endif
4287         return false;  // bail-out; let JVM_GetCallerClass do the work
4288       }
4289       break;
4290     default:
4291       if (!m->is_ignored_by_security_stack_walk()) {
4292         // We have reached the desired frame; return the holder class.
4293         // Acquire method holder as java.lang.Class and push as constant.
4294         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4295         ciInstance* caller_mirror = caller_klass->java_mirror();
4296         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4297 
4298 #ifndef PRODUCT
4299         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4300           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4301           tty->print_cr("  JVM state at this point:");
4302           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4303             ciMethod* m = jvms()->of_depth(i)->method();
4304             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4305           }
4306         }
4307 #endif
4308         return true;
4309       }
4310       break;
4311     }
4312   }
4313 
4314 #ifndef PRODUCT
4315   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4316     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4317     tty->print_cr("  JVM state at this point:");
4318     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4319       ciMethod* m = jvms()->of_depth(i)->method();
4320       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4321     }
4322   }
4323 #endif
4324 
4325   return false;  // bail-out; let JVM_GetCallerClass do the work
4326 }
4327 
4328 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4329   Node* arg = argument(0);
4330   Node* result;
4331 
4332   switch (id) {
4333   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4334   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4335   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4336   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4337 
4338   case vmIntrinsics::_doubleToLongBits: {
4339     // two paths (plus control) merge in a wood
4340     RegionNode *r = new RegionNode(3);
4341     Node *phi = new PhiNode(r, TypeLong::LONG);
4342 
4343     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4344     // Build the boolean node
4345     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4346 
4347     // Branch either way.
4348     // NaN case is less traveled, which makes all the difference.
4349     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4350     Node *opt_isnan = _gvn.transform(ifisnan);
4351     assert( opt_isnan->is_If(), "Expect an IfNode");
4352     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4353     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4354 
4355     set_control(iftrue);
4356 
4357     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4358     Node *slow_result = longcon(nan_bits); // return NaN
4359     phi->init_req(1, _gvn.transform( slow_result ));
4360     r->init_req(1, iftrue);
4361 
4362     // Else fall through
4363     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4364     set_control(iffalse);
4365 
4366     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4367     r->init_req(2, iffalse);
4368 
4369     // Post merge
4370     set_control(_gvn.transform(r));
4371     record_for_igvn(r);
4372 
4373     C->set_has_split_ifs(true); // Has chance for split-if optimization
4374     result = phi;
4375     assert(result->bottom_type()->isa_long(), "must be");
4376     break;
4377   }
4378 
4379   case vmIntrinsics::_floatToIntBits: {
4380     // two paths (plus control) merge in a wood
4381     RegionNode *r = new RegionNode(3);
4382     Node *phi = new PhiNode(r, TypeInt::INT);
4383 
4384     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4385     // Build the boolean node
4386     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4387 
4388     // Branch either way.
4389     // NaN case is less traveled, which makes all the difference.
4390     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4391     Node *opt_isnan = _gvn.transform(ifisnan);
4392     assert( opt_isnan->is_If(), "Expect an IfNode");
4393     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4394     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4395 
4396     set_control(iftrue);
4397 
4398     static const jint nan_bits = 0x7fc00000;
4399     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4400     phi->init_req(1, _gvn.transform( slow_result ));
4401     r->init_req(1, iftrue);
4402 
4403     // Else fall through
4404     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4405     set_control(iffalse);
4406 
4407     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4408     r->init_req(2, iffalse);
4409 
4410     // Post merge
4411     set_control(_gvn.transform(r));
4412     record_for_igvn(r);
4413 
4414     C->set_has_split_ifs(true); // Has chance for split-if optimization
4415     result = phi;
4416     assert(result->bottom_type()->isa_int(), "must be");
4417     break;
4418   }
4419 
4420   default:
4421     fatal_unexpected_iid(id);
4422     break;
4423   }
4424   set_result(_gvn.transform(result));
4425   return true;
4426 }
4427 
4428 #ifdef _LP64
4429 #define XTOP ,top() /*additional argument*/
4430 #else  //_LP64
4431 #define XTOP        /*no additional argument*/
4432 #endif //_LP64
4433 
4434 //----------------------inline_unsafe_copyMemory-------------------------
4435 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4436 bool LibraryCallKit::inline_unsafe_copyMemory() {
4437   if (callee()->is_static())  return false;  // caller must have the capability!
4438   null_check_receiver();  // null-check receiver
4439   if (stopped())  return true;
4440 
4441   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4442 
4443   Node* src_ptr =         argument(1);   // type: oop
4444   Node* src_off = ConvL2X(argument(2));  // type: long
4445   Node* dst_ptr =         argument(4);   // type: oop
4446   Node* dst_off = ConvL2X(argument(5));  // type: long
4447   Node* size    = ConvL2X(argument(7));  // type: long
4448 
4449   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4450          "fieldOffset must be byte-scaled");
4451 
4452   Node* src = make_unsafe_address(src_ptr, src_off);
4453   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4454 
4455   // Conservatively insert a memory barrier on all memory slices.
4456   // Do not let writes of the copy source or destination float below the copy.
4457   insert_mem_bar(Op_MemBarCPUOrder);
4458 
4459   // Call it.  Note that the length argument is not scaled.
4460   make_runtime_call(RC_LEAF|RC_NO_FP,
4461                     OptoRuntime::fast_arraycopy_Type(),
4462                     StubRoutines::unsafe_arraycopy(),
4463                     "unsafe_arraycopy",
4464                     TypeRawPtr::BOTTOM,
4465                     src, dst, size XTOP);
4466 
4467   // Do not let reads of the copy destination float above the copy.
4468   insert_mem_bar(Op_MemBarCPUOrder);
4469 
4470   return true;
4471 }
4472 
4473 //------------------------clone_coping-----------------------------------
4474 // Helper function for inline_native_clone.
4475 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4476   assert(obj_size != NULL, "");
4477   Node* raw_obj = alloc_obj->in(1);
4478   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4479 
4480   AllocateNode* alloc = NULL;
4481   if (ReduceBulkZeroing) {
4482     // We will be completely responsible for initializing this object -
4483     // mark Initialize node as complete.
4484     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4485     // The object was just allocated - there should be no any stores!
4486     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4487     // Mark as complete_with_arraycopy so that on AllocateNode
4488     // expansion, we know this AllocateNode is initialized by an array
4489     // copy and a StoreStore barrier exists after the array copy.
4490     alloc->initialization()->set_complete_with_arraycopy();
4491   }
4492 
4493   // Copy the fastest available way.
4494   // TODO: generate fields copies for small objects instead.
4495   Node* src  = obj;
4496   Node* dest = alloc_obj;
4497   Node* size = _gvn.transform(obj_size);
4498 
4499   // Exclude the header but include array length to copy by 8 bytes words.
4500   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4501   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4502                             instanceOopDesc::base_offset_in_bytes();
4503   // base_off:
4504   // 8  - 32-bit VM
4505   // 12 - 64-bit VM, compressed klass
4506   // 16 - 64-bit VM, normal klass
4507   if (base_off % BytesPerLong != 0) {
4508     assert(UseCompressedClassPointers, "");
4509     if (is_array) {
4510       // Exclude length to copy by 8 bytes words.
4511       base_off += sizeof(int);
4512     } else {
4513       // Include klass to copy by 8 bytes words.
4514       base_off = instanceOopDesc::klass_offset_in_bytes();
4515     }
4516     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4517   }
4518   src  = basic_plus_adr(src,  base_off);
4519   dest = basic_plus_adr(dest, base_off);
4520 
4521   // Compute the length also, if needed:
4522   Node* countx = size;
4523   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4524   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4525 
4526   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4527 
4528   ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false);
4529   ac->set_clonebasic();
4530   Node* n = _gvn.transform(ac);
4531   if (n == ac) {
4532     set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4533   } else {
4534     set_all_memory(n);
4535   }
4536 
4537   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4538   if (card_mark) {
4539     assert(!is_array, "");
4540     // Put in store barrier for any and all oops we are sticking
4541     // into this object.  (We could avoid this if we could prove
4542     // that the object type contains no oop fields at all.)
4543     Node* no_particular_value = NULL;
4544     Node* no_particular_field = NULL;
4545     int raw_adr_idx = Compile::AliasIdxRaw;
4546     post_barrier(control(),
4547                  memory(raw_adr_type),
4548                  alloc_obj,
4549                  no_particular_field,
4550                  raw_adr_idx,
4551                  no_particular_value,
4552                  T_OBJECT,
4553                  false);
4554   }
4555 
4556   // Do not let reads from the cloned object float above the arraycopy.
4557   if (alloc != NULL) {
4558     // Do not let stores that initialize this object be reordered with
4559     // a subsequent store that would make this object accessible by
4560     // other threads.
4561     // Record what AllocateNode this StoreStore protects so that
4562     // escape analysis can go from the MemBarStoreStoreNode to the
4563     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4564     // based on the escape status of the AllocateNode.
4565     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4566   } else {
4567     insert_mem_bar(Op_MemBarCPUOrder);
4568   }
4569 }
4570 
4571 //------------------------inline_native_clone----------------------------
4572 // protected native Object java.lang.Object.clone();
4573 //
4574 // Here are the simple edge cases:
4575 //  null receiver => normal trap
4576 //  virtual and clone was overridden => slow path to out-of-line clone
4577 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4578 //
4579 // The general case has two steps, allocation and copying.
4580 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4581 //
4582 // Copying also has two cases, oop arrays and everything else.
4583 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4584 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4585 //
4586 // These steps fold up nicely if and when the cloned object's klass
4587 // can be sharply typed as an object array, a type array, or an instance.
4588 //
4589 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4590   PhiNode* result_val;
4591 
4592   // Set the reexecute bit for the interpreter to reexecute
4593   // the bytecode that invokes Object.clone if deoptimization happens.
4594   { PreserveReexecuteState preexecs(this);
4595     jvms()->set_should_reexecute(true);
4596 
4597     Node* obj = null_check_receiver();
4598     if (stopped())  return true;
4599 
4600     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4601 
4602     // If we are going to clone an instance, we need its exact type to
4603     // know the number and types of fields to convert the clone to
4604     // loads/stores. Maybe a speculative type can help us.
4605     if (!obj_type->klass_is_exact() &&
4606         obj_type->speculative_type() != NULL &&
4607         obj_type->speculative_type()->is_instance_klass()) {
4608       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4609       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4610           !spec_ik->has_injected_fields()) {
4611         ciKlass* k = obj_type->klass();
4612         if (!k->is_instance_klass() ||
4613             k->as_instance_klass()->is_interface() ||
4614             k->as_instance_klass()->has_subklass()) {
4615           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4616         }
4617       }
4618     }
4619 
4620     Node* obj_klass = load_object_klass(obj);
4621     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4622     const TypeOopPtr*   toop   = ((tklass != NULL)
4623                                 ? tklass->as_instance_type()
4624                                 : TypeInstPtr::NOTNULL);
4625 
4626     // Conservatively insert a memory barrier on all memory slices.
4627     // Do not let writes into the original float below the clone.
4628     insert_mem_bar(Op_MemBarCPUOrder);
4629 
4630     // paths into result_reg:
4631     enum {
4632       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4633       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4634       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4635       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4636       PATH_LIMIT
4637     };
4638     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4639     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4640     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4641     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4642     record_for_igvn(result_reg);
4643 
4644     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4645     int raw_adr_idx = Compile::AliasIdxRaw;
4646 
4647     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4648     if (array_ctl != NULL) {
4649       // It's an array.
4650       PreserveJVMState pjvms(this);
4651       set_control(array_ctl);
4652       Node* obj_length = load_array_length(obj);
4653       Node* obj_size  = NULL;
4654       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4655 
4656       if (!use_ReduceInitialCardMarks()) {
4657         // If it is an oop array, it requires very special treatment,
4658         // because card marking is required on each card of the array.
4659         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4660         if (is_obja != NULL) {
4661           PreserveJVMState pjvms2(this);
4662           set_control(is_obja);
4663           // Generate a direct call to the right arraycopy function(s).
4664           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4665           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL);
4666           ac->set_cloneoop();
4667           Node* n = _gvn.transform(ac);
4668           assert(n == ac, "cannot disappear");
4669           ac->connect_outputs(this);
4670 
4671           result_reg->init_req(_objArray_path, control());
4672           result_val->init_req(_objArray_path, alloc_obj);
4673           result_i_o ->set_req(_objArray_path, i_o());
4674           result_mem ->set_req(_objArray_path, reset_memory());
4675         }
4676       }
4677       // Otherwise, there are no card marks to worry about.
4678       // (We can dispense with card marks if we know the allocation
4679       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4680       //  causes the non-eden paths to take compensating steps to
4681       //  simulate a fresh allocation, so that no further
4682       //  card marks are required in compiled code to initialize
4683       //  the object.)
4684 
4685       if (!stopped()) {
4686         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4687 
4688         // Present the results of the copy.
4689         result_reg->init_req(_array_path, control());
4690         result_val->init_req(_array_path, alloc_obj);
4691         result_i_o ->set_req(_array_path, i_o());
4692         result_mem ->set_req(_array_path, reset_memory());
4693       }
4694     }
4695 
4696     // We only go to the instance fast case code if we pass a number of guards.
4697     // The paths which do not pass are accumulated in the slow_region.
4698     RegionNode* slow_region = new RegionNode(1);
4699     record_for_igvn(slow_region);
4700     if (!stopped()) {
4701       // It's an instance (we did array above).  Make the slow-path tests.
4702       // If this is a virtual call, we generate a funny guard.  We grab
4703       // the vtable entry corresponding to clone() from the target object.
4704       // If the target method which we are calling happens to be the
4705       // Object clone() method, we pass the guard.  We do not need this
4706       // guard for non-virtual calls; the caller is known to be the native
4707       // Object clone().
4708       if (is_virtual) {
4709         generate_virtual_guard(obj_klass, slow_region);
4710       }
4711 
4712       // The object must be cloneable and must not have a finalizer.
4713       // Both of these conditions may be checked in a single test.
4714       // We could optimize the cloneable test further, but we don't care.
4715       generate_access_flags_guard(obj_klass,
4716                                   // Test both conditions:
4717                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4718                                   // Must be cloneable but not finalizer:
4719                                   JVM_ACC_IS_CLONEABLE,
4720                                   slow_region);
4721     }
4722 
4723     if (!stopped()) {
4724       // It's an instance, and it passed the slow-path tests.
4725       PreserveJVMState pjvms(this);
4726       Node* obj_size  = NULL;
4727       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4728       // is reexecuted if deoptimization occurs and there could be problems when merging
4729       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4730       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4731 
4732       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4733 
4734       // Present the results of the slow call.
4735       result_reg->init_req(_instance_path, control());
4736       result_val->init_req(_instance_path, alloc_obj);
4737       result_i_o ->set_req(_instance_path, i_o());
4738       result_mem ->set_req(_instance_path, reset_memory());
4739     }
4740 
4741     // Generate code for the slow case.  We make a call to clone().
4742     set_control(_gvn.transform(slow_region));
4743     if (!stopped()) {
4744       PreserveJVMState pjvms(this);
4745       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4746       Node* slow_result = set_results_for_java_call(slow_call);
4747       // this->control() comes from set_results_for_java_call
4748       result_reg->init_req(_slow_path, control());
4749       result_val->init_req(_slow_path, slow_result);
4750       result_i_o ->set_req(_slow_path, i_o());
4751       result_mem ->set_req(_slow_path, reset_memory());
4752     }
4753 
4754     // Return the combined state.
4755     set_control(    _gvn.transform(result_reg));
4756     set_i_o(        _gvn.transform(result_i_o));
4757     set_all_memory( _gvn.transform(result_mem));
4758   } // original reexecute is set back here
4759 
4760   set_result(_gvn.transform(result_val));
4761   return true;
4762 }
4763 
4764 // If we have a tighly coupled allocation, the arraycopy may take care
4765 // of the array initialization. If one of the guards we insert between
4766 // the allocation and the arraycopy causes a deoptimization, an
4767 // unitialized array will escape the compiled method. To prevent that
4768 // we set the JVM state for uncommon traps between the allocation and
4769 // the arraycopy to the state before the allocation so, in case of
4770 // deoptimization, we'll reexecute the allocation and the
4771 // initialization.
4772 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4773   if (alloc != NULL) {
4774     ciMethod* trap_method = alloc->jvms()->method();
4775     int trap_bci = alloc->jvms()->bci();
4776 
4777     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &
4778           !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4779       // Make sure there's no store between the allocation and the
4780       // arraycopy otherwise visible side effects could be rexecuted
4781       // in case of deoptimization and cause incorrect execution.
4782       bool no_interfering_store = true;
4783       Node* mem = alloc->in(TypeFunc::Memory);
4784       if (mem->is_MergeMem()) {
4785         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4786           Node* n = mms.memory();
4787           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4788             assert(n->is_Store(), "what else?");
4789             no_interfering_store = false;
4790             break;
4791           }
4792         }
4793       } else {
4794         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4795           Node* n = mms.memory();
4796           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4797             assert(n->is_Store(), "what else?");
4798             no_interfering_store = false;
4799             break;
4800           }
4801         }
4802       }
4803 
4804       if (no_interfering_store) {
4805         JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4806         uint size = alloc->req();
4807         SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4808         old_jvms->set_map(sfpt);
4809         for (uint i = 0; i < size; i++) {
4810           sfpt->init_req(i, alloc->in(i));
4811         }
4812         // re-push array length for deoptimization
4813         sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4814         old_jvms->set_sp(old_jvms->sp()+1);
4815         old_jvms->set_monoff(old_jvms->monoff()+1);
4816         old_jvms->set_scloff(old_jvms->scloff()+1);
4817         old_jvms->set_endoff(old_jvms->endoff()+1);
4818         old_jvms->set_should_reexecute(true);
4819 
4820         sfpt->set_i_o(map()->i_o());
4821         sfpt->set_memory(map()->memory());
4822         sfpt->set_control(map()->control());
4823 
4824         JVMState* saved_jvms = jvms();
4825         saved_reexecute_sp = _reexecute_sp;
4826 
4827         set_jvms(sfpt->jvms());
4828         _reexecute_sp = jvms()->sp();
4829 
4830         return saved_jvms;
4831       }
4832     }
4833   }
4834   return NULL;
4835 }
4836 
4837 // In case of a deoptimization, we restart execution at the
4838 // allocation, allocating a new array. We would leave an uninitialized
4839 // array in the heap that GCs wouldn't expect. Move the allocation
4840 // after the traps so we don't allocate the array if we
4841 // deoptimize. This is possible because tightly_coupled_allocation()
4842 // guarantees there's no observer of the allocated array at this point
4843 // and the control flow is simple enough.
4844 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp) {
4845   if (saved_jvms != NULL && !stopped()) {
4846     assert(alloc != NULL, "only with a tightly coupled allocation");
4847     // restore JVM state to the state at the arraycopy
4848     saved_jvms->map()->set_control(map()->control());
4849     assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4850     assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4851     // If we've improved the types of some nodes (null check) while
4852     // emitting the guards, propagate them to the current state
4853     map()->replaced_nodes().apply(saved_jvms->map());
4854     set_jvms(saved_jvms);
4855     _reexecute_sp = saved_reexecute_sp;
4856 
4857     // Remove the allocation from above the guards
4858     CallProjections callprojs;
4859     alloc->extract_projections(&callprojs, true);
4860     InitializeNode* init = alloc->initialization();
4861     Node* alloc_mem = alloc->in(TypeFunc::Memory);
4862     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4863     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4864     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4865 
4866     // move the allocation here (after the guards)
4867     _gvn.hash_delete(alloc);
4868     alloc->set_req(TypeFunc::Control, control());
4869     alloc->set_req(TypeFunc::I_O, i_o());
4870     Node *mem = reset_memory();
4871     set_all_memory(mem);
4872     alloc->set_req(TypeFunc::Memory, mem);
4873     set_control(init->proj_out(TypeFunc::Control));
4874     set_i_o(callprojs.fallthrough_ioproj);
4875 
4876     // Update memory as done in GraphKit::set_output_for_allocation()
4877     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
4878     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
4879     if (ary_type->isa_aryptr() && length_type != NULL) {
4880       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4881     }
4882     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
4883     int            elemidx  = C->get_alias_index(telemref);
4884     set_memory(init->proj_out(TypeFunc::Memory), Compile::AliasIdxRaw);
4885     set_memory(init->proj_out(TypeFunc::Memory), elemidx);
4886 
4887     Node* allocx = _gvn.transform(alloc);
4888     assert(allocx == alloc, "where has the allocation gone?");
4889     assert(dest->is_CheckCastPP(), "not an allocation result?");
4890 
4891     _gvn.hash_delete(dest);
4892     dest->set_req(0, control());
4893     Node* destx = _gvn.transform(dest);
4894     assert(destx == dest, "where has the allocation result gone?");
4895   }
4896 }
4897 
4898 
4899 //------------------------------inline_arraycopy-----------------------
4900 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4901 //                                                      Object dest, int destPos,
4902 //                                                      int length);
4903 bool LibraryCallKit::inline_arraycopy() {
4904   // Get the arguments.
4905   Node* src         = argument(0);  // type: oop
4906   Node* src_offset  = argument(1);  // type: int
4907   Node* dest        = argument(2);  // type: oop
4908   Node* dest_offset = argument(3);  // type: int
4909   Node* length      = argument(4);  // type: int
4910 
4911 
4912   // Check for allocation before we add nodes that would confuse
4913   // tightly_coupled_allocation()
4914   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4915 
4916   int saved_reexecute_sp = -1;
4917   JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
4918   // See arraycopy_restore_alloc_state() comment
4919   // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
4920   // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
4921   // if saved_jvms == NULL and alloc != NULL, we can’t emit any guards
4922   bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
4923 
4924   // The following tests must be performed
4925   // (1) src and dest are arrays.
4926   // (2) src and dest arrays must have elements of the same BasicType
4927   // (3) src and dest must not be null.
4928   // (4) src_offset must not be negative.
4929   // (5) dest_offset must not be negative.
4930   // (6) length must not be negative.
4931   // (7) src_offset + length must not exceed length of src.
4932   // (8) dest_offset + length must not exceed length of dest.
4933   // (9) each element of an oop array must be assignable
4934 
4935   // (3) src and dest must not be null.
4936   // always do this here because we need the JVM state for uncommon traps
4937   Node* null_ctl = top();
4938   src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
4939   assert(null_ctl->is_top(), "no null control here");
4940   dest = null_check(dest, T_ARRAY);
4941 
4942   if (!can_emit_guards) {
4943     // if saved_jvms == NULL and alloc != NULL, we don't emit any
4944     // guards but the arraycopy node could still take advantage of a
4945     // tightly allocated allocation. tightly_coupled_allocation() is
4946     // called again to make sure it takes the null check above into
4947     // account: the null check is mandatory and if it caused an
4948     // uncommon trap to be emitted then the allocation can't be
4949     // considered tightly coupled in this context.
4950     alloc = tightly_coupled_allocation(dest, NULL);
4951   }
4952 
4953   bool validated = false;
4954 
4955   const Type* src_type  = _gvn.type(src);
4956   const Type* dest_type = _gvn.type(dest);
4957   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4958   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4959 
4960   // Do we have the type of src?
4961   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4962   // Do we have the type of dest?
4963   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4964   // Is the type for src from speculation?
4965   bool src_spec = false;
4966   // Is the type for dest from speculation?
4967   bool dest_spec = false;
4968 
4969   if ((!has_src || !has_dest) && can_emit_guards) {
4970     // We don't have sufficient type information, let's see if
4971     // speculative types can help. We need to have types for both src
4972     // and dest so that it pays off.
4973 
4974     // Do we already have or could we have type information for src
4975     bool could_have_src = has_src;
4976     // Do we already have or could we have type information for dest
4977     bool could_have_dest = has_dest;
4978 
4979     ciKlass* src_k = NULL;
4980     if (!has_src) {
4981       src_k = src_type->speculative_type_not_null();
4982       if (src_k != NULL && src_k->is_array_klass()) {
4983         could_have_src = true;
4984       }
4985     }
4986 
4987     ciKlass* dest_k = NULL;
4988     if (!has_dest) {
4989       dest_k = dest_type->speculative_type_not_null();
4990       if (dest_k != NULL && dest_k->is_array_klass()) {
4991         could_have_dest = true;
4992       }
4993     }
4994 
4995     if (could_have_src && could_have_dest) {
4996       // This is going to pay off so emit the required guards
4997       if (!has_src) {
4998         src = maybe_cast_profiled_obj(src, src_k, true);
4999         src_type  = _gvn.type(src);
5000         top_src  = src_type->isa_aryptr();
5001         has_src = (top_src != NULL && top_src->klass() != NULL);
5002         src_spec = true;
5003       }
5004       if (!has_dest) {
5005         dest = maybe_cast_profiled_obj(dest, dest_k, true);
5006         dest_type  = _gvn.type(dest);
5007         top_dest  = dest_type->isa_aryptr();
5008         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
5009         dest_spec = true;
5010       }
5011     }
5012   }
5013 
5014   if (has_src && has_dest && can_emit_guards) {
5015     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
5016     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
5017     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
5018     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
5019 
5020     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5021       // If both arrays are object arrays then having the exact types
5022       // for both will remove the need for a subtype check at runtime
5023       // before the call and may make it possible to pick a faster copy
5024       // routine (without a subtype check on every element)
5025       // Do we have the exact type of src?
5026       bool could_have_src = src_spec;
5027       // Do we have the exact type of dest?
5028       bool could_have_dest = dest_spec;
5029       ciKlass* src_k = top_src->klass();
5030       ciKlass* dest_k = top_dest->klass();
5031       if (!src_spec) {
5032         src_k = src_type->speculative_type_not_null();
5033         if (src_k != NULL && src_k->is_array_klass()) {
5034           could_have_src = true;
5035         }
5036       }
5037       if (!dest_spec) {
5038         dest_k = dest_type->speculative_type_not_null();
5039         if (dest_k != NULL && dest_k->is_array_klass()) {
5040           could_have_dest = true;
5041         }
5042       }
5043       if (could_have_src && could_have_dest) {
5044         // If we can have both exact types, emit the missing guards
5045         if (could_have_src && !src_spec) {
5046           src = maybe_cast_profiled_obj(src, src_k, true);
5047         }
5048         if (could_have_dest && !dest_spec) {
5049           dest = maybe_cast_profiled_obj(dest, dest_k, true);
5050         }
5051       }
5052     }
5053   }
5054 
5055   ciMethod* trap_method = method();
5056   int trap_bci = bci();
5057   if (saved_jvms != NULL) {
5058     trap_method = alloc->jvms()->method();
5059     trap_bci = alloc->jvms()->bci();
5060   }
5061 
5062   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5063       can_emit_guards &&
5064       !src->is_top() && !dest->is_top()) {
5065     // validate arguments: enables transformation the ArrayCopyNode
5066     validated = true;
5067 
5068     RegionNode* slow_region = new RegionNode(1);
5069     record_for_igvn(slow_region);
5070 
5071     // (1) src and dest are arrays.
5072     generate_non_array_guard(load_object_klass(src), slow_region);
5073     generate_non_array_guard(load_object_klass(dest), slow_region);
5074 
5075     // (2) src and dest arrays must have elements of the same BasicType
5076     // done at macro expansion or at Ideal transformation time
5077 
5078     // (4) src_offset must not be negative.
5079     generate_negative_guard(src_offset, slow_region);
5080 
5081     // (5) dest_offset must not be negative.
5082     generate_negative_guard(dest_offset, slow_region);
5083 
5084     // (7) src_offset + length must not exceed length of src.
5085     generate_limit_guard(src_offset, length,
5086                          load_array_length(src),
5087                          slow_region);
5088 
5089     // (8) dest_offset + length must not exceed length of dest.
5090     generate_limit_guard(dest_offset, length,
5091                          load_array_length(dest),
5092                          slow_region);
5093 
5094     // (9) each element of an oop array must be assignable
5095     Node* src_klass  = load_object_klass(src);
5096     Node* dest_klass = load_object_klass(dest);
5097     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5098 
5099     if (not_subtype_ctrl != top()) {
5100       PreserveJVMState pjvms(this);
5101       set_control(not_subtype_ctrl);
5102       uncommon_trap(Deoptimization::Reason_intrinsic,
5103                     Deoptimization::Action_make_not_entrant);
5104       assert(stopped(), "Should be stopped");
5105     }
5106     {
5107       PreserveJVMState pjvms(this);
5108       set_control(_gvn.transform(slow_region));
5109       uncommon_trap(Deoptimization::Reason_intrinsic,
5110                     Deoptimization::Action_make_not_entrant);
5111       assert(stopped(), "Should be stopped");
5112     }
5113   }
5114 
5115   arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp);
5116 
5117   if (stopped()) {
5118     return true;
5119   }
5120 
5121   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL,
5122                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
5123                                           // so the compiler has a chance to eliminate them: during macro expansion,
5124                                           // we have to set their control (CastPP nodes are eliminated).
5125                                           load_object_klass(src), load_object_klass(dest),
5126                                           load_array_length(src), load_array_length(dest));
5127 
5128   ac->set_arraycopy(validated);
5129 
5130   Node* n = _gvn.transform(ac);
5131   if (n == ac) {
5132     ac->connect_outputs(this);
5133   } else {
5134     assert(validated, "shouldn't transform if all arguments not validated");
5135     set_all_memory(n);
5136   }
5137 
5138   return true;
5139 }
5140 
5141 
5142 // Helper function which determines if an arraycopy immediately follows
5143 // an allocation, with no intervening tests or other escapes for the object.
5144 AllocateArrayNode*
5145 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5146                                            RegionNode* slow_region) {
5147   if (stopped())             return NULL;  // no fast path
5148   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5149 
5150   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5151   if (alloc == NULL)  return NULL;
5152 
5153   Node* rawmem = memory(Compile::AliasIdxRaw);
5154   // Is the allocation's memory state untouched?
5155   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5156     // Bail out if there have been raw-memory effects since the allocation.
5157     // (Example:  There might have been a call or safepoint.)
5158     return NULL;
5159   }
5160   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5161   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5162     return NULL;
5163   }
5164 
5165   // There must be no unexpected observers of this allocation.
5166   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5167     Node* obs = ptr->fast_out(i);
5168     if (obs != this->map()) {
5169       return NULL;
5170     }
5171   }
5172 
5173   // This arraycopy must unconditionally follow the allocation of the ptr.
5174   Node* alloc_ctl = ptr->in(0);
5175   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5176 
5177   Node* ctl = control();
5178   while (ctl != alloc_ctl) {
5179     // There may be guards which feed into the slow_region.
5180     // Any other control flow means that we might not get a chance
5181     // to finish initializing the allocated object.
5182     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5183       IfNode* iff = ctl->in(0)->as_If();
5184       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5185       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5186       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5187         ctl = iff->in(0);       // This test feeds the known slow_region.
5188         continue;
5189       }
5190       // One more try:  Various low-level checks bottom out in
5191       // uncommon traps.  If the debug-info of the trap omits
5192       // any reference to the allocation, as we've already
5193       // observed, then there can be no objection to the trap.
5194       bool found_trap = false;
5195       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5196         Node* obs = not_ctl->fast_out(j);
5197         if (obs->in(0) == not_ctl && obs->is_Call() &&
5198             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5199           found_trap = true; break;
5200         }
5201       }
5202       if (found_trap) {
5203         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5204         continue;
5205       }
5206     }
5207     return NULL;
5208   }
5209 
5210   // If we get this far, we have an allocation which immediately
5211   // precedes the arraycopy, and we can take over zeroing the new object.
5212   // The arraycopy will finish the initialization, and provide
5213   // a new control state to which we will anchor the destination pointer.
5214 
5215   return alloc;
5216 }
5217 
5218 //-------------inline_encodeISOArray-----------------------------------
5219 // encode char[] to byte[] in ISO_8859_1
5220 bool LibraryCallKit::inline_encodeISOArray() {
5221   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5222   // no receiver since it is static method
5223   Node *src         = argument(0);
5224   Node *src_offset  = argument(1);
5225   Node *dst         = argument(2);
5226   Node *dst_offset  = argument(3);
5227   Node *length      = argument(4);
5228 
5229   const Type* src_type = src->Value(&_gvn);
5230   const Type* dst_type = dst->Value(&_gvn);
5231   const TypeAryPtr* top_src = src_type->isa_aryptr();
5232   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5233   if (top_src  == NULL || top_src->klass()  == NULL ||
5234       top_dest == NULL || top_dest->klass() == NULL) {
5235     // failed array check
5236     return false;
5237   }
5238 
5239   // Figure out the size and type of the elements we will be copying.
5240   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5241   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5242   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5243     return false;
5244   }
5245   Node* src_start = array_element_address(src, src_offset, src_elem);
5246   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5247   // 'src_start' points to src array + scaled offset
5248   // 'dst_start' points to dst array + scaled offset
5249 
5250   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5251   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5252   enc = _gvn.transform(enc);
5253   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5254   set_memory(res_mem, mtype);
5255   set_result(enc);
5256   return true;
5257 }
5258 
5259 //-------------inline_multiplyToLen-----------------------------------
5260 bool LibraryCallKit::inline_multiplyToLen() {
5261   assert(UseMultiplyToLenIntrinsic, "not implementated on this platform");
5262 
5263   address stubAddr = StubRoutines::multiplyToLen();
5264   if (stubAddr == NULL) {
5265     return false; // Intrinsic's stub is not implemented on this platform
5266   }
5267   const char* stubName = "multiplyToLen";
5268 
5269   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5270 
5271   // no receiver because it is a static method
5272   Node* x    = argument(0);
5273   Node* xlen = argument(1);
5274   Node* y    = argument(2);
5275   Node* ylen = argument(3);
5276   Node* z    = argument(4);
5277 
5278   const Type* x_type = x->Value(&_gvn);
5279   const Type* y_type = y->Value(&_gvn);
5280   const TypeAryPtr* top_x = x_type->isa_aryptr();
5281   const TypeAryPtr* top_y = y_type->isa_aryptr();
5282   if (top_x  == NULL || top_x->klass()  == NULL ||
5283       top_y == NULL || top_y->klass() == NULL) {
5284     // failed array check
5285     return false;
5286   }
5287 
5288   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5289   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5290   if (x_elem != T_INT || y_elem != T_INT) {
5291     return false;
5292   }
5293 
5294   // Set the original stack and the reexecute bit for the interpreter to reexecute
5295   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5296   // on the return from z array allocation in runtime.
5297   { PreserveReexecuteState preexecs(this);
5298     jvms()->set_should_reexecute(true);
5299 
5300     Node* x_start = array_element_address(x, intcon(0), x_elem);
5301     Node* y_start = array_element_address(y, intcon(0), y_elem);
5302     // 'x_start' points to x array + scaled xlen
5303     // 'y_start' points to y array + scaled ylen
5304 
5305     // Allocate the result array
5306     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5307     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5308     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5309 
5310     IdealKit ideal(this);
5311 
5312 #define __ ideal.
5313      Node* one = __ ConI(1);
5314      Node* zero = __ ConI(0);
5315      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5316      __ set(need_alloc, zero);
5317      __ set(z_alloc, z);
5318      __ if_then(z, BoolTest::eq, null()); {
5319        __ increment (need_alloc, one);
5320      } __ else_(); {
5321        // Update graphKit memory and control from IdealKit.
5322        sync_kit(ideal);
5323        Node* zlen_arg = load_array_length(z);
5324        // Update IdealKit memory and control from graphKit.
5325        __ sync_kit(this);
5326        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5327          __ increment (need_alloc, one);
5328        } __ end_if();
5329      } __ end_if();
5330 
5331      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5332        // Update graphKit memory and control from IdealKit.
5333        sync_kit(ideal);
5334        Node * narr = new_array(klass_node, zlen, 1);
5335        // Update IdealKit memory and control from graphKit.
5336        __ sync_kit(this);
5337        __ set(z_alloc, narr);
5338      } __ end_if();
5339 
5340      sync_kit(ideal);
5341      z = __ value(z_alloc);
5342      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5343      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5344      // Final sync IdealKit and GraphKit.
5345      final_sync(ideal);
5346 #undef __
5347 
5348     Node* z_start = array_element_address(z, intcon(0), T_INT);
5349 
5350     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5351                                    OptoRuntime::multiplyToLen_Type(),
5352                                    stubAddr, stubName, TypePtr::BOTTOM,
5353                                    x_start, xlen, y_start, ylen, z_start, zlen);
5354   } // original reexecute is set back here
5355 
5356   C->set_has_split_ifs(true); // Has chance for split-if optimization
5357   set_result(z);
5358   return true;
5359 }
5360 
5361 //-------------inline_squareToLen------------------------------------
5362 bool LibraryCallKit::inline_squareToLen() {
5363   assert(UseSquareToLenIntrinsic, "not implementated on this platform");
5364 
5365   address stubAddr = StubRoutines::squareToLen();
5366   if (stubAddr == NULL) {
5367     return false; // Intrinsic's stub is not implemented on this platform
5368   }
5369   const char* stubName = "squareToLen";
5370 
5371   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5372 
5373   Node* x    = argument(0);
5374   Node* len  = argument(1);
5375   Node* z    = argument(2);
5376   Node* zlen = argument(3);
5377 
5378   const Type* x_type = x->Value(&_gvn);
5379   const Type* z_type = z->Value(&_gvn);
5380   const TypeAryPtr* top_x = x_type->isa_aryptr();
5381   const TypeAryPtr* top_z = z_type->isa_aryptr();
5382   if (top_x  == NULL || top_x->klass()  == NULL ||
5383       top_z  == NULL || top_z->klass()  == NULL) {
5384     // failed array check
5385     return false;
5386   }
5387 
5388   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5389   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5390   if (x_elem != T_INT || z_elem != T_INT) {
5391     return false;
5392   }
5393 
5394 
5395   Node* x_start = array_element_address(x, intcon(0), x_elem);
5396   Node* z_start = array_element_address(z, intcon(0), z_elem);
5397 
5398   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5399                                   OptoRuntime::squareToLen_Type(),
5400                                   stubAddr, stubName, TypePtr::BOTTOM,
5401                                   x_start, len, z_start, zlen);
5402 
5403   set_result(z);
5404   return true;
5405 }
5406 
5407 //-------------inline_mulAdd------------------------------------------
5408 bool LibraryCallKit::inline_mulAdd() {
5409   assert(UseMulAddIntrinsic, "not implementated on this platform");
5410 
5411   address stubAddr = StubRoutines::mulAdd();
5412   if (stubAddr == NULL) {
5413     return false; // Intrinsic's stub is not implemented on this platform
5414   }
5415   const char* stubName = "mulAdd";
5416 
5417   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5418 
5419   Node* out      = argument(0);
5420   Node* in       = argument(1);
5421   Node* offset   = argument(2);
5422   Node* len      = argument(3);
5423   Node* k        = argument(4);
5424 
5425   const Type* out_type = out->Value(&_gvn);
5426   const Type* in_type = in->Value(&_gvn);
5427   const TypeAryPtr* top_out = out_type->isa_aryptr();
5428   const TypeAryPtr* top_in = in_type->isa_aryptr();
5429   if (top_out  == NULL || top_out->klass()  == NULL ||
5430       top_in == NULL || top_in->klass() == NULL) {
5431     // failed array check
5432     return false;
5433   }
5434 
5435   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5436   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5437   if (out_elem != T_INT || in_elem != T_INT) {
5438     return false;
5439   }
5440 
5441   Node* outlen = load_array_length(out);
5442   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5443   Node* out_start = array_element_address(out, intcon(0), out_elem);
5444   Node* in_start = array_element_address(in, intcon(0), in_elem);
5445 
5446   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5447                                   OptoRuntime::mulAdd_Type(),
5448                                   stubAddr, stubName, TypePtr::BOTTOM,
5449                                   out_start,in_start, new_offset, len, k);
5450   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5451   set_result(result);
5452   return true;
5453 }
5454 
5455 //-------------inline_montgomeryMultiply-----------------------------------
5456 bool LibraryCallKit::inline_montgomeryMultiply() {
5457   address stubAddr = StubRoutines::montgomeryMultiply();
5458   if (stubAddr == NULL) {
5459     return false; // Intrinsic's stub is not implemented on this platform
5460   }
5461 
5462   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
5463   const char* stubName = "montgomery_square";
5464 
5465   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
5466 
5467   Node* a    = argument(0);
5468   Node* b    = argument(1);
5469   Node* n    = argument(2);
5470   Node* len  = argument(3);
5471   Node* inv  = argument(4);
5472   Node* m    = argument(6);
5473 
5474   const Type* a_type = a->Value(&_gvn);
5475   const TypeAryPtr* top_a = a_type->isa_aryptr();
5476   const Type* b_type = b->Value(&_gvn);
5477   const TypeAryPtr* top_b = b_type->isa_aryptr();
5478   const Type* n_type = a->Value(&_gvn);
5479   const TypeAryPtr* top_n = n_type->isa_aryptr();
5480   const Type* m_type = a->Value(&_gvn);
5481   const TypeAryPtr* top_m = m_type->isa_aryptr();
5482   if (top_a  == NULL || top_a->klass()  == NULL ||
5483       top_b == NULL || top_b->klass()  == NULL ||
5484       top_n == NULL || top_n->klass()  == NULL ||
5485       top_m == NULL || top_m->klass()  == NULL) {
5486     // failed array check
5487     return false;
5488   }
5489 
5490   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5491   BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5492   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5493   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5494   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5495     return false;
5496   }
5497 
5498   // Make the call
5499   {
5500     Node* a_start = array_element_address(a, intcon(0), a_elem);
5501     Node* b_start = array_element_address(b, intcon(0), b_elem);
5502     Node* n_start = array_element_address(n, intcon(0), n_elem);
5503     Node* m_start = array_element_address(m, intcon(0), m_elem);
5504 
5505     Node* call = make_runtime_call(RC_LEAF,
5506                                    OptoRuntime::montgomeryMultiply_Type(),
5507                                    stubAddr, stubName, TypePtr::BOTTOM,
5508                                    a_start, b_start, n_start, len, inv, top(),
5509                                    m_start);
5510     set_result(m);
5511   }
5512 
5513   return true;
5514 }
5515 
5516 bool LibraryCallKit::inline_montgomerySquare() {
5517   address stubAddr = StubRoutines::montgomerySquare();
5518   if (stubAddr == NULL) {
5519     return false; // Intrinsic's stub is not implemented on this platform
5520   }
5521 
5522   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
5523   const char* stubName = "montgomery_square";
5524 
5525   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
5526 
5527   Node* a    = argument(0);
5528   Node* n    = argument(1);
5529   Node* len  = argument(2);
5530   Node* inv  = argument(3);
5531   Node* m    = argument(5);
5532 
5533   const Type* a_type = a->Value(&_gvn);
5534   const TypeAryPtr* top_a = a_type->isa_aryptr();
5535   const Type* n_type = a->Value(&_gvn);
5536   const TypeAryPtr* top_n = n_type->isa_aryptr();
5537   const Type* m_type = a->Value(&_gvn);
5538   const TypeAryPtr* top_m = m_type->isa_aryptr();
5539   if (top_a  == NULL || top_a->klass()  == NULL ||
5540       top_n == NULL || top_n->klass()  == NULL ||
5541       top_m == NULL || top_m->klass()  == NULL) {
5542     // failed array check
5543     return false;
5544   }
5545 
5546   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5547   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5548   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5549   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5550     return false;
5551   }
5552 
5553   // Make the call
5554   {
5555     Node* a_start = array_element_address(a, intcon(0), a_elem);
5556     Node* n_start = array_element_address(n, intcon(0), n_elem);
5557     Node* m_start = array_element_address(m, intcon(0), m_elem);
5558 
5559     Node* call = make_runtime_call(RC_LEAF,
5560                                    OptoRuntime::montgomerySquare_Type(),
5561                                    stubAddr, stubName, TypePtr::BOTTOM,
5562                                    a_start, n_start, len, inv, top(),
5563                                    m_start);
5564     set_result(m);
5565   }
5566 
5567   return true;
5568 }
5569 
5570 
5571 /**
5572  * Calculate CRC32 for byte.
5573  * int java.util.zip.CRC32.update(int crc, int b)
5574  */
5575 bool LibraryCallKit::inline_updateCRC32() {
5576   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5577   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5578   // no receiver since it is static method
5579   Node* crc  = argument(0); // type: int
5580   Node* b    = argument(1); // type: int
5581 
5582   /*
5583    *    int c = ~ crc;
5584    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5585    *    b = b ^ (c >>> 8);
5586    *    crc = ~b;
5587    */
5588 
5589   Node* M1 = intcon(-1);
5590   crc = _gvn.transform(new XorINode(crc, M1));
5591   Node* result = _gvn.transform(new XorINode(crc, b));
5592   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5593 
5594   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5595   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5596   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5597   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5598 
5599   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5600   result = _gvn.transform(new XorINode(crc, result));
5601   result = _gvn.transform(new XorINode(result, M1));
5602   set_result(result);
5603   return true;
5604 }
5605 
5606 /**
5607  * Calculate CRC32 for byte[] array.
5608  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5609  */
5610 bool LibraryCallKit::inline_updateBytesCRC32() {
5611   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5612   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5613   // no receiver since it is static method
5614   Node* crc     = argument(0); // type: int
5615   Node* src     = argument(1); // type: oop
5616   Node* offset  = argument(2); // type: int
5617   Node* length  = argument(3); // type: int
5618 
5619   const Type* src_type = src->Value(&_gvn);
5620   const TypeAryPtr* top_src = src_type->isa_aryptr();
5621   if (top_src  == NULL || top_src->klass()  == NULL) {
5622     // failed array check
5623     return false;
5624   }
5625 
5626   // Figure out the size and type of the elements we will be copying.
5627   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5628   if (src_elem != T_BYTE) {
5629     return false;
5630   }
5631 
5632   // 'src_start' points to src array + scaled offset
5633   Node* src_start = array_element_address(src, offset, src_elem);
5634 
5635   // We assume that range check is done by caller.
5636   // TODO: generate range check (offset+length < src.length) in debug VM.
5637 
5638   // Call the stub.
5639   address stubAddr = StubRoutines::updateBytesCRC32();
5640   const char *stubName = "updateBytesCRC32";
5641 
5642   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5643                                  stubAddr, stubName, TypePtr::BOTTOM,
5644                                  crc, src_start, length);
5645   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5646   set_result(result);
5647   return true;
5648 }
5649 
5650 /**
5651  * Calculate CRC32 for ByteBuffer.
5652  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5653  */
5654 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5655   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5656   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5657   // no receiver since it is static method
5658   Node* crc     = argument(0); // type: int
5659   Node* src     = argument(1); // type: long
5660   Node* offset  = argument(3); // type: int
5661   Node* length  = argument(4); // type: int
5662 
5663   src = ConvL2X(src);  // adjust Java long to machine word
5664   Node* base = _gvn.transform(new CastX2PNode(src));
5665   offset = ConvI2X(offset);
5666 
5667   // 'src_start' points to src array + scaled offset
5668   Node* src_start = basic_plus_adr(top(), base, offset);
5669 
5670   // Call the stub.
5671   address stubAddr = StubRoutines::updateBytesCRC32();
5672   const char *stubName = "updateBytesCRC32";
5673 
5674   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5675                                  stubAddr, stubName, TypePtr::BOTTOM,
5676                                  crc, src_start, length);
5677   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5678   set_result(result);
5679   return true;
5680 }
5681 
5682 //------------------------------get_table_from_crc32c_class-----------------------
5683 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
5684   Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
5685   assert (table != NULL, "wrong version of java.util.zip.CRC32C");
5686 
5687   return table;
5688 }
5689 
5690 //------------------------------inline_updateBytesCRC32C-----------------------
5691 //
5692 // Calculate CRC32C for byte[] array.
5693 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
5694 //
5695 bool LibraryCallKit::inline_updateBytesCRC32C() {
5696   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5697   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5698   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5699   // no receiver since it is a static method
5700   Node* crc     = argument(0); // type: int
5701   Node* src     = argument(1); // type: oop
5702   Node* offset  = argument(2); // type: int
5703   Node* end     = argument(3); // type: int
5704 
5705   Node* length = _gvn.transform(new SubINode(end, offset));
5706 
5707   const Type* src_type = src->Value(&_gvn);
5708   const TypeAryPtr* top_src = src_type->isa_aryptr();
5709   if (top_src  == NULL || top_src->klass()  == NULL) {
5710     // failed array check
5711     return false;
5712   }
5713 
5714   // Figure out the size and type of the elements we will be copying.
5715   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5716   if (src_elem != T_BYTE) {
5717     return false;
5718   }
5719 
5720   // 'src_start' points to src array + scaled offset
5721   Node* src_start = array_element_address(src, offset, src_elem);
5722 
5723   // static final int[] byteTable in class CRC32C
5724   Node* table = get_table_from_crc32c_class(callee()->holder());
5725   Node* table_start = array_element_address(table, intcon(0), T_INT);
5726 
5727   // We assume that range check is done by caller.
5728   // TODO: generate range check (offset+length < src.length) in debug VM.
5729 
5730   // Call the stub.
5731   address stubAddr = StubRoutines::updateBytesCRC32C();
5732   const char *stubName = "updateBytesCRC32C";
5733 
5734   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5735                                  stubAddr, stubName, TypePtr::BOTTOM,
5736                                  crc, src_start, length, table_start);
5737   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5738   set_result(result);
5739   return true;
5740 }
5741 
5742 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
5743 //
5744 // Calculate CRC32C for DirectByteBuffer.
5745 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
5746 //
5747 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
5748   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5749   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
5750   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5751   // no receiver since it is a static method
5752   Node* crc     = argument(0); // type: int
5753   Node* src     = argument(1); // type: long
5754   Node* offset  = argument(3); // type: int
5755   Node* end     = argument(4); // type: int
5756 
5757   Node* length = _gvn.transform(new SubINode(end, offset));
5758 
5759   src = ConvL2X(src);  // adjust Java long to machine word
5760   Node* base = _gvn.transform(new CastX2PNode(src));
5761   offset = ConvI2X(offset);
5762 
5763   // 'src_start' points to src array + scaled offset
5764   Node* src_start = basic_plus_adr(top(), base, offset);
5765 
5766   // static final int[] byteTable in class CRC32C
5767   Node* table = get_table_from_crc32c_class(callee()->holder());
5768   Node* table_start = array_element_address(table, intcon(0), T_INT);
5769 
5770   // Call the stub.
5771   address stubAddr = StubRoutines::updateBytesCRC32C();
5772   const char *stubName = "updateBytesCRC32C";
5773 
5774   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5775                                  stubAddr, stubName, TypePtr::BOTTOM,
5776                                  crc, src_start, length, table_start);
5777   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5778   set_result(result);
5779   return true;
5780 }
5781 
5782 //----------------------------inline_reference_get----------------------------
5783 // public T java.lang.ref.Reference.get();
5784 bool LibraryCallKit::inline_reference_get() {
5785   const int referent_offset = java_lang_ref_Reference::referent_offset;
5786   guarantee(referent_offset > 0, "should have already been set");
5787 
5788   // Get the argument:
5789   Node* reference_obj = null_check_receiver();
5790   if (stopped()) return true;
5791 
5792   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5793 
5794   ciInstanceKlass* klass = env()->Object_klass();
5795   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5796 
5797   Node* no_ctrl = NULL;
5798   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5799 
5800   // Use the pre-barrier to record the value in the referent field
5801   pre_barrier(false /* do_load */,
5802               control(),
5803               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5804               result /* pre_val */,
5805               T_OBJECT);
5806 
5807   // Add memory barrier to prevent commoning reads from this field
5808   // across safepoint since GC can change its value.
5809   insert_mem_bar(Op_MemBarCPUOrder);
5810 
5811   set_result(result);
5812   return true;
5813 }
5814 
5815 
5816 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5817                                               bool is_exact=true, bool is_static=false,
5818                                               ciInstanceKlass * fromKls=NULL) {
5819   if (fromKls == NULL) {
5820     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5821     assert(tinst != NULL, "obj is null");
5822     assert(tinst->klass()->is_loaded(), "obj is not loaded");
5823     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5824     fromKls = tinst->klass()->as_instance_klass();
5825   } else {
5826     assert(is_static, "only for static field access");
5827   }
5828   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5829                                               ciSymbol::make(fieldTypeString),
5830                                               is_static);
5831 
5832   assert (field != NULL, "undefined field");
5833   if (field == NULL) return (Node *) NULL;
5834 
5835   if (is_static) {
5836     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5837     fromObj = makecon(tip);
5838   }
5839 
5840   // Next code  copied from Parse::do_get_xxx():
5841 
5842   // Compute address and memory type.
5843   int offset  = field->offset_in_bytes();
5844   bool is_vol = field->is_volatile();
5845   ciType* field_klass = field->type();
5846   assert(field_klass->is_loaded(), "should be loaded");
5847   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5848   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5849   BasicType bt = field->layout_type();
5850 
5851   // Build the resultant type of the load
5852   const Type *type;
5853   if (bt == T_OBJECT) {
5854     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5855   } else {
5856     type = Type::get_const_basic_type(bt);
5857   }
5858 
5859   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
5860     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
5861   }
5862   // Build the load.
5863   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
5864   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
5865   // If reference is volatile, prevent following memory ops from
5866   // floating up past the volatile read.  Also prevents commoning
5867   // another volatile read.
5868   if (is_vol) {
5869     // Memory barrier includes bogus read of value to force load BEFORE membar
5870     insert_mem_bar(Op_MemBarAcquire, loadedField);
5871   }
5872   return loadedField;
5873 }
5874 
5875 
5876 //------------------------------inline_aescrypt_Block-----------------------
5877 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5878   address stubAddr;
5879   const char *stubName;
5880   assert(UseAES, "need AES instruction support");
5881 
5882   switch(id) {
5883   case vmIntrinsics::_aescrypt_encryptBlock:
5884     stubAddr = StubRoutines::aescrypt_encryptBlock();
5885     stubName = "aescrypt_encryptBlock";
5886     break;
5887   case vmIntrinsics::_aescrypt_decryptBlock:
5888     stubAddr = StubRoutines::aescrypt_decryptBlock();
5889     stubName = "aescrypt_decryptBlock";
5890     break;
5891   }
5892   if (stubAddr == NULL) return false;
5893 
5894   Node* aescrypt_object = argument(0);
5895   Node* src             = argument(1);
5896   Node* src_offset      = argument(2);
5897   Node* dest            = argument(3);
5898   Node* dest_offset     = argument(4);
5899 
5900   // (1) src and dest are arrays.
5901   const Type* src_type = src->Value(&_gvn);
5902   const Type* dest_type = dest->Value(&_gvn);
5903   const TypeAryPtr* top_src = src_type->isa_aryptr();
5904   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5905   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5906 
5907   // for the quick and dirty code we will skip all the checks.
5908   // we are just trying to get the call to be generated.
5909   Node* src_start  = src;
5910   Node* dest_start = dest;
5911   if (src_offset != NULL || dest_offset != NULL) {
5912     assert(src_offset != NULL && dest_offset != NULL, "");
5913     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5914     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5915   }
5916 
5917   // now need to get the start of its expanded key array
5918   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5919   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5920   if (k_start == NULL) return false;
5921 
5922   if (Matcher::pass_original_key_for_aes()) {
5923     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5924     // compatibility issues between Java key expansion and SPARC crypto instructions
5925     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5926     if (original_k_start == NULL) return false;
5927 
5928     // Call the stub.
5929     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5930                       stubAddr, stubName, TypePtr::BOTTOM,
5931                       src_start, dest_start, k_start, original_k_start);
5932   } else {
5933     // Call the stub.
5934     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5935                       stubAddr, stubName, TypePtr::BOTTOM,
5936                       src_start, dest_start, k_start);
5937   }
5938 
5939   return true;
5940 }
5941 
5942 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5943 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5944   address stubAddr;
5945   const char *stubName;
5946 
5947   assert(UseAES, "need AES instruction support");
5948 
5949   switch(id) {
5950   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5951     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5952     stubName = "cipherBlockChaining_encryptAESCrypt";
5953     break;
5954   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5955     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5956     stubName = "cipherBlockChaining_decryptAESCrypt";
5957     break;
5958   }
5959   if (stubAddr == NULL) return false;
5960 
5961   Node* cipherBlockChaining_object = argument(0);
5962   Node* src                        = argument(1);
5963   Node* src_offset                 = argument(2);
5964   Node* len                        = argument(3);
5965   Node* dest                       = argument(4);
5966   Node* dest_offset                = argument(5);
5967 
5968   // (1) src and dest are arrays.
5969   const Type* src_type = src->Value(&_gvn);
5970   const Type* dest_type = dest->Value(&_gvn);
5971   const TypeAryPtr* top_src = src_type->isa_aryptr();
5972   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5973   assert (top_src  != NULL && top_src->klass()  != NULL
5974           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5975 
5976   // checks are the responsibility of the caller
5977   Node* src_start  = src;
5978   Node* dest_start = dest;
5979   if (src_offset != NULL || dest_offset != NULL) {
5980     assert(src_offset != NULL && dest_offset != NULL, "");
5981     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5982     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5983   }
5984 
5985   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5986   // (because of the predicated logic executed earlier).
5987   // so we cast it here safely.
5988   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5989 
5990   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5991   if (embeddedCipherObj == NULL) return false;
5992 
5993   // cast it to what we know it will be at runtime
5994   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5995   assert(tinst != NULL, "CBC obj is null");
5996   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5997   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5998   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
5999 
6000   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6001   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6002   const TypeOopPtr* xtype = aklass->as_instance_type();
6003   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6004   aescrypt_object = _gvn.transform(aescrypt_object);
6005 
6006   // we need to get the start of the aescrypt_object's expanded key array
6007   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6008   if (k_start == NULL) return false;
6009 
6010   // similarly, get the start address of the r vector
6011   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6012   if (objRvec == NULL) return false;
6013   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6014 
6015   Node* cbcCrypt;
6016   if (Matcher::pass_original_key_for_aes()) {
6017     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6018     // compatibility issues between Java key expansion and SPARC crypto instructions
6019     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6020     if (original_k_start == NULL) return false;
6021 
6022     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6023     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6024                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6025                                  stubAddr, stubName, TypePtr::BOTTOM,
6026                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6027   } else {
6028     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6029     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6030                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6031                                  stubAddr, stubName, TypePtr::BOTTOM,
6032                                  src_start, dest_start, k_start, r_start, len);
6033   }
6034 
6035   // return cipher length (int)
6036   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
6037   set_result(retvalue);
6038   return true;
6039 }
6040 
6041 //------------------------------get_key_start_from_aescrypt_object-----------------------
6042 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6043   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6044   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6045   if (objAESCryptKey == NULL) return (Node *) NULL;
6046 
6047   // now have the array, need to get the start address of the K array
6048   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6049   return k_start;
6050 }
6051 
6052 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6053 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6054   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6055   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6056   if (objAESCryptKey == NULL) return (Node *) NULL;
6057 
6058   // now have the array, need to get the start address of the lastKey array
6059   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6060   return original_k_start;
6061 }
6062 
6063 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6064 // Return node representing slow path of predicate check.
6065 // the pseudo code we want to emulate with this predicate is:
6066 // for encryption:
6067 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6068 // for decryption:
6069 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6070 //    note cipher==plain is more conservative than the original java code but that's OK
6071 //
6072 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6073   // The receiver was checked for NULL already.
6074   Node* objCBC = argument(0);
6075 
6076   // Load embeddedCipher field of CipherBlockChaining object.
6077   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6078 
6079   // get AESCrypt klass for instanceOf check
6080   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6081   // will have same classloader as CipherBlockChaining object
6082   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6083   assert(tinst != NULL, "CBCobj is null");
6084   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6085 
6086   // we want to do an instanceof comparison against the AESCrypt class
6087   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6088   if (!klass_AESCrypt->is_loaded()) {
6089     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6090     Node* ctrl = control();
6091     set_control(top()); // no regular fast path
6092     return ctrl;
6093   }
6094   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6095 
6096   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6097   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
6098   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6099 
6100   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6101 
6102   // for encryption, we are done
6103   if (!decrypting)
6104     return instof_false;  // even if it is NULL
6105 
6106   // for decryption, we need to add a further check to avoid
6107   // taking the intrinsic path when cipher and plain are the same
6108   // see the original java code for why.
6109   RegionNode* region = new RegionNode(3);
6110   region->init_req(1, instof_false);
6111   Node* src = argument(1);
6112   Node* dest = argument(4);
6113   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6114   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6115   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6116   region->init_req(2, src_dest_conjoint);
6117 
6118   record_for_igvn(region);
6119   return _gvn.transform(region);
6120 }
6121 
6122 //------------------------------inline_ghash_processBlocks
6123 bool LibraryCallKit::inline_ghash_processBlocks() {
6124   address stubAddr;
6125   const char *stubName;
6126   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6127 
6128   stubAddr = StubRoutines::ghash_processBlocks();
6129   stubName = "ghash_processBlocks";
6130 
6131   Node* data           = argument(0);
6132   Node* offset         = argument(1);
6133   Node* len            = argument(2);
6134   Node* state          = argument(3);
6135   Node* subkeyH        = argument(4);
6136 
6137   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6138   assert(state_start, "state is NULL");
6139   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6140   assert(subkeyH_start, "subkeyH is NULL");
6141   Node* data_start  = array_element_address(data, offset, T_BYTE);
6142   assert(data_start, "data is NULL");
6143 
6144   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6145                                   OptoRuntime::ghash_processBlocks_Type(),
6146                                   stubAddr, stubName, TypePtr::BOTTOM,
6147                                   state_start, subkeyH_start, data_start, len);
6148   return true;
6149 }
6150 
6151 //------------------------------inline_sha_implCompress-----------------------
6152 //
6153 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6154 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6155 //
6156 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6157 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6158 //
6159 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6160 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6161 //
6162 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6163   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6164 
6165   Node* sha_obj = argument(0);
6166   Node* src     = argument(1); // type oop
6167   Node* ofs     = argument(2); // type int
6168 
6169   const Type* src_type = src->Value(&_gvn);
6170   const TypeAryPtr* top_src = src_type->isa_aryptr();
6171   if (top_src  == NULL || top_src->klass()  == NULL) {
6172     // failed array check
6173     return false;
6174   }
6175   // Figure out the size and type of the elements we will be copying.
6176   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6177   if (src_elem != T_BYTE) {
6178     return false;
6179   }
6180   // 'src_start' points to src array + offset
6181   Node* src_start = array_element_address(src, ofs, src_elem);
6182   Node* state = NULL;
6183   address stubAddr;
6184   const char *stubName;
6185 
6186   switch(id) {
6187   case vmIntrinsics::_sha_implCompress:
6188     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6189     state = get_state_from_sha_object(sha_obj);
6190     stubAddr = StubRoutines::sha1_implCompress();
6191     stubName = "sha1_implCompress";
6192     break;
6193   case vmIntrinsics::_sha2_implCompress:
6194     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6195     state = get_state_from_sha_object(sha_obj);
6196     stubAddr = StubRoutines::sha256_implCompress();
6197     stubName = "sha256_implCompress";
6198     break;
6199   case vmIntrinsics::_sha5_implCompress:
6200     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6201     state = get_state_from_sha5_object(sha_obj);
6202     stubAddr = StubRoutines::sha512_implCompress();
6203     stubName = "sha512_implCompress";
6204     break;
6205   default:
6206     fatal_unexpected_iid(id);
6207     return false;
6208   }
6209   if (state == NULL) return false;
6210 
6211   // Call the stub.
6212   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6213                                  stubAddr, stubName, TypePtr::BOTTOM,
6214                                  src_start, state);
6215 
6216   return true;
6217 }
6218 
6219 //------------------------------inline_digestBase_implCompressMB-----------------------
6220 //
6221 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6222 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6223 //
6224 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6225   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6226          "need SHA1/SHA256/SHA512 instruction support");
6227   assert((uint)predicate < 3, "sanity");
6228   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6229 
6230   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6231   Node* src            = argument(1); // byte[] array
6232   Node* ofs            = argument(2); // type int
6233   Node* limit          = argument(3); // type int
6234 
6235   const Type* src_type = src->Value(&_gvn);
6236   const TypeAryPtr* top_src = src_type->isa_aryptr();
6237   if (top_src  == NULL || top_src->klass()  == NULL) {
6238     // failed array check
6239     return false;
6240   }
6241   // Figure out the size and type of the elements we will be copying.
6242   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6243   if (src_elem != T_BYTE) {
6244     return false;
6245   }
6246   // 'src_start' points to src array + offset
6247   Node* src_start = array_element_address(src, ofs, src_elem);
6248 
6249   const char* klass_SHA_name = NULL;
6250   const char* stub_name = NULL;
6251   address     stub_addr = NULL;
6252   bool        long_state = false;
6253 
6254   switch (predicate) {
6255   case 0:
6256     if (UseSHA1Intrinsics) {
6257       klass_SHA_name = "sun/security/provider/SHA";
6258       stub_name = "sha1_implCompressMB";
6259       stub_addr = StubRoutines::sha1_implCompressMB();
6260     }
6261     break;
6262   case 1:
6263     if (UseSHA256Intrinsics) {
6264       klass_SHA_name = "sun/security/provider/SHA2";
6265       stub_name = "sha256_implCompressMB";
6266       stub_addr = StubRoutines::sha256_implCompressMB();
6267     }
6268     break;
6269   case 2:
6270     if (UseSHA512Intrinsics) {
6271       klass_SHA_name = "sun/security/provider/SHA5";
6272       stub_name = "sha512_implCompressMB";
6273       stub_addr = StubRoutines::sha512_implCompressMB();
6274       long_state = true;
6275     }
6276     break;
6277   default:
6278     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
6279   }
6280   if (klass_SHA_name != NULL) {
6281     // get DigestBase klass to lookup for SHA klass
6282     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6283     assert(tinst != NULL, "digestBase_obj is not instance???");
6284     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6285 
6286     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6287     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6288     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6289     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6290   }
6291   return false;
6292 }
6293 //------------------------------inline_sha_implCompressMB-----------------------
6294 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6295                                                bool long_state, address stubAddr, const char *stubName,
6296                                                Node* src_start, Node* ofs, Node* limit) {
6297   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6298   const TypeOopPtr* xtype = aklass->as_instance_type();
6299   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6300   sha_obj = _gvn.transform(sha_obj);
6301 
6302   Node* state;
6303   if (long_state) {
6304     state = get_state_from_sha5_object(sha_obj);
6305   } else {
6306     state = get_state_from_sha_object(sha_obj);
6307   }
6308   if (state == NULL) return false;
6309 
6310   // Call the stub.
6311   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6312                                  OptoRuntime::digestBase_implCompressMB_Type(),
6313                                  stubAddr, stubName, TypePtr::BOTTOM,
6314                                  src_start, state, ofs, limit);
6315   // return ofs (int)
6316   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6317   set_result(result);
6318 
6319   return true;
6320 }
6321 
6322 //------------------------------get_state_from_sha_object-----------------------
6323 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6324   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6325   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6326   if (sha_state == NULL) return (Node *) NULL;
6327 
6328   // now have the array, need to get the start address of the state array
6329   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6330   return state;
6331 }
6332 
6333 //------------------------------get_state_from_sha5_object-----------------------
6334 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6335   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6336   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6337   if (sha_state == NULL) return (Node *) NULL;
6338 
6339   // now have the array, need to get the start address of the state array
6340   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6341   return state;
6342 }
6343 
6344 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6345 // Return node representing slow path of predicate check.
6346 // the pseudo code we want to emulate with this predicate is:
6347 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6348 //
6349 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6350   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6351          "need SHA1/SHA256/SHA512 instruction support");
6352   assert((uint)predicate < 3, "sanity");
6353 
6354   // The receiver was checked for NULL already.
6355   Node* digestBaseObj = argument(0);
6356 
6357   // get DigestBase klass for instanceOf check
6358   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6359   assert(tinst != NULL, "digestBaseObj is null");
6360   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6361 
6362   const char* klass_SHA_name = NULL;
6363   switch (predicate) {
6364   case 0:
6365     if (UseSHA1Intrinsics) {
6366       // we want to do an instanceof comparison against the SHA class
6367       klass_SHA_name = "sun/security/provider/SHA";
6368     }
6369     break;
6370   case 1:
6371     if (UseSHA256Intrinsics) {
6372       // we want to do an instanceof comparison against the SHA2 class
6373       klass_SHA_name = "sun/security/provider/SHA2";
6374     }
6375     break;
6376   case 2:
6377     if (UseSHA512Intrinsics) {
6378       // we want to do an instanceof comparison against the SHA5 class
6379       klass_SHA_name = "sun/security/provider/SHA5";
6380     }
6381     break;
6382   default:
6383     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
6384   }
6385 
6386   ciKlass* klass_SHA = NULL;
6387   if (klass_SHA_name != NULL) {
6388     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6389   }
6390   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6391     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6392     Node* ctrl = control();
6393     set_control(top()); // no intrinsic path
6394     return ctrl;
6395   }
6396   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6397 
6398   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6399   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6400   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6401   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6402 
6403   return instof_false;  // even if it is NULL
6404 }
6405 
6406 bool LibraryCallKit::inline_profileBoolean() {
6407   Node* counts = argument(1);
6408   const TypeAryPtr* ary = NULL;
6409   ciArray* aobj = NULL;
6410   if (counts->is_Con()
6411       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6412       && (aobj = ary->const_oop()->as_array()) != NULL
6413       && (aobj->length() == 2)) {
6414     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6415     jint false_cnt = aobj->element_value(0).as_int();
6416     jint  true_cnt = aobj->element_value(1).as_int();
6417 
6418     if (C->log() != NULL) {
6419       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6420                      false_cnt, true_cnt);
6421     }
6422 
6423     if (false_cnt + true_cnt == 0) {
6424       // According to profile, never executed.
6425       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6426                           Deoptimization::Action_reinterpret);
6427       return true;
6428     }
6429 
6430     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6431     // is a number of each value occurrences.
6432     Node* result = argument(0);
6433     if (false_cnt == 0 || true_cnt == 0) {
6434       // According to profile, one value has been never seen.
6435       int expected_val = (false_cnt == 0) ? 1 : 0;
6436 
6437       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6438       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6439 
6440       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6441       Node* fast_path = _gvn.transform(new IfTrueNode(check));
6442       Node* slow_path = _gvn.transform(new IfFalseNode(check));
6443 
6444       { // Slow path: uncommon trap for never seen value and then reexecute
6445         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6446         // the value has been seen at least once.
6447         PreserveJVMState pjvms(this);
6448         PreserveReexecuteState preexecs(this);
6449         jvms()->set_should_reexecute(true);
6450 
6451         set_control(slow_path);
6452         set_i_o(i_o());
6453 
6454         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6455                             Deoptimization::Action_reinterpret);
6456       }
6457       // The guard for never seen value enables sharpening of the result and
6458       // returning a constant. It allows to eliminate branches on the same value
6459       // later on.
6460       set_control(fast_path);
6461       result = intcon(expected_val);
6462     }
6463     // Stop profiling.
6464     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6465     // By replacing method body with profile data (represented as ProfileBooleanNode
6466     // on IR level) we effectively disable profiling.
6467     // It enables full speed execution once optimized code is generated.
6468     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
6469     C->record_for_igvn(profile);
6470     set_result(profile);
6471     return true;
6472   } else {
6473     // Continue profiling.
6474     // Profile data isn't available at the moment. So, execute method's bytecode version.
6475     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6476     // is compiled and counters aren't available since corresponding MethodHandle
6477     // isn't a compile-time constant.
6478     return false;
6479   }
6480 }
6481 
6482 bool LibraryCallKit::inline_isCompileConstant() {
6483   Node* n = argument(0);
6484   set_result(n->is_Con() ? intcon(1) : intcon(0));
6485   return true;
6486 }