< prev index next >

src/hotspot/share/gc/g1/heapRegion.hpp

Print this page
rev 56811 : imported patch 8189737-heapregion-remove-space-inheritance


  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_GC_G1_HEAPREGION_HPP
  26 #define SHARE_GC_G1_HEAPREGION_HPP
  27 
  28 #include "gc/g1/g1BlockOffsetTable.hpp"
  29 #include "gc/g1/g1HeapRegionTraceType.hpp"
  30 #include "gc/g1/heapRegionTracer.hpp"
  31 #include "gc/g1/heapRegionType.hpp"
  32 #include "gc/g1/survRateGroup.hpp"
  33 #include "gc/shared/ageTable.hpp"
  34 #include "gc/shared/cardTable.hpp"
  35 #include "gc/shared/verifyOption.hpp"
  36 #include "gc/shared/spaceDecorator.hpp"


  37 #include "utilities/macros.hpp"
  38 
  39 // A HeapRegion is the smallest piece of a G1CollectedHeap that
  40 // can be collected independently.
  41 
  42 // NOTE: Although a HeapRegion is a Space, its
  43 // Space::initDirtyCardClosure method must not be called.
  44 // The problem is that the existence of this method breaks
  45 // the independence of barrier sets from remembered sets.
  46 // The solution is to remove this method from the definition
  47 // of a Space.
  48 
  49 // Each heap region is self contained. top() and end() can never
  50 // be set beyond the end of the region. For humongous objects,
  51 // the first region is a StartsHumongous region. If the humongous
  52 // object is larger than a heap region, the following regions will
  53 // be of type ContinuesHumongous. In this case the top() of the
  54 // StartHumongous region and all ContinuesHumongous regions except
  55 // the last will point to their own end. The last ContinuesHumongous
  56 // region may have top() equal the end of object if there isn't
  57 // room for filler objects to pad out to the end of the region.
  58 
  59 class G1CollectedHeap;
  60 class G1CMBitMap;
  61 class G1IsAliveAndApplyClosure;
  62 class HeapRegionRemSet;
  63 class HeapRegion;
  64 class HeapRegionSetBase;
  65 class nmethod;
  66 
  67 #define HR_FORMAT "%u:(%s)[" PTR_FORMAT "," PTR_FORMAT "," PTR_FORMAT "]"
  68 #define HR_FORMAT_PARAMS(_hr_) \
  69                 (_hr_)->hrm_index(), \
  70                 (_hr_)->get_short_type_str(), \
  71                 p2i((_hr_)->bottom()), p2i((_hr_)->top()), p2i((_hr_)->end())
  72 
  73 // sentinel value for hrm_index
  74 #define G1_NO_HRM_INDEX ((uint) -1)
  75 
  76 // The complicating factor is that BlockOffsetTable diverged
  77 // significantly, and we need functionality that is only in the G1 version.
  78 // So I copied that code, which led to an alternate G1 version of
  79 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
  80 // be reconciled, then G1OffsetTableContigSpace could go away.
  81 
  82 // The idea behind time stamps is the following. We want to keep track of
  83 // the highest address where it's safe to scan objects for each region.
  84 // This is only relevant for current GC alloc regions so we keep a time stamp
  85 // per region to determine if the region has been allocated during the current
  86 // GC or not. If the time stamp is current we report a scan_top value which
  87 // was saved at the end of the previous GC for retained alloc regions and which is
  88 // equal to the bottom for all other regions.
  89 // There is a race between card scanners and allocating gc workers where we must ensure
  90 // that card scanners do not read the memory allocated by the gc workers.
  91 // In order to enforce that, we must not return a value of _top which is more recent than the
  92 // time stamp. This is due to the fact that a region may become a gc alloc region at
  93 // some point after we've read the timestamp value as being < the current time stamp.
  94 // The time stamps are re-initialized to zero at cleanup and at Full GCs.
  95 // The current scheme that uses sequential unsigned ints will fail only if we have 4b
  96 // evacuation pauses between two cleanups, which is _highly_ unlikely.
  97 class G1ContiguousSpace: public CompactibleSpace {
  98   friend class VMStructs;




  99   HeapWord* volatile _top;
 100  protected:

 101   G1BlockOffsetTablePart _bot_part;
 102   Mutex _par_alloc_lock;
 103   // When we need to retire an allocation region, while other threads
 104   // are also concurrently trying to allocate into it, we typically
 105   // allocate a dummy object at the end of the region to ensure that
 106   // no more allocations can take place in it. However, sometimes we
 107   // want to know where the end of the last "real" object we allocated
 108   // into the region was and this is what this keeps track.
 109   HeapWord* _pre_dummy_top;
 110 
 111  public:
 112   G1ContiguousSpace(G1BlockOffsetTable* bot);







 113 
 114   void set_top(HeapWord* value) { _top = value; }
 115   HeapWord* top() const { return _top; }
 116 
 117  protected:
 118   // Reset the G1ContiguousSpace.
 119   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);















 120 
 121   HeapWord* volatile* top_addr() { return &_top; }
 122   // Try to allocate at least min_word_size and up to desired_size from this Space.


 123   // Returns NULL if not possible, otherwise sets actual_word_size to the amount of
 124   // space allocated.
 125   // This version assumes that all allocation requests to this Space are properly
 126   // synchronized.
 127   inline HeapWord* allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
 128   // Try to allocate at least min_word_size and up to desired_size from this Space.
 129   // Returns NULL if not possible, otherwise sets actual_word_size to the amount of
 130   // space allocated.
 131   // This version synchronizes with other calls to par_allocate_impl().
 132   inline HeapWord* par_allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
 133 
 134  public:
 135   void reset_after_compaction() { set_top(compaction_top()); }
 136 
 137   size_t used() const { return byte_size(bottom(), top()); }
 138   size_t free() const { return byte_size(top(), end()); }
 139   bool is_free_block(const HeapWord* p) const { return p >= top(); }
 140 
 141   MemRegion used_region() const { return MemRegion(bottom(), top()); }
 142 

 143   void object_iterate(ObjectClosure* blk);
 144   void safe_object_iterate(ObjectClosure* blk);
 145 
 146   void mangle_unused_area() PRODUCT_RETURN;
 147   void mangle_unused_area_complete() PRODUCT_RETURN;
 148 
 149   // See the comment above in the declaration of _pre_dummy_top for an
 150   // explanation of what it is.
 151   void set_pre_dummy_top(HeapWord* pre_dummy_top) {
 152     assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
 153     _pre_dummy_top = pre_dummy_top;
 154   }

 155   HeapWord* pre_dummy_top() {
 156     return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
 157   }
 158   void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
 159 
 160   virtual void clear(bool mangle_space);
 161 
 162   HeapWord* block_start(const void* p);
 163   HeapWord* block_start_const(const void* p) const;
 164 
 165   // Allocation (return NULL if full).  Assumes the caller has established
 166   // mutually exclusive access to the space.
 167   HeapWord* allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
 168   // Allocation (return NULL if full).  Enforces mutual exclusion internally.
 169   HeapWord* par_allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
 170 
 171   virtual HeapWord* allocate(size_t word_size);
 172   virtual HeapWord* par_allocate(size_t word_size);
 173 
 174   HeapWord* saved_mark_word() const { ShouldNotReachHere(); return NULL; }
 175 
 176   // MarkSweep support phase3
 177   virtual HeapWord* initialize_threshold();
 178   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
 179 
 180   virtual void print() const;
 181 
 182   void reset_bot() {
 183     _bot_part.reset_bot();
 184   }
 185 
 186   void print_bot_on(outputStream* out) {
 187     _bot_part.print_on(out);
 188   }
 189 };
 190 
 191 class HeapRegion: public G1ContiguousSpace {
 192   friend class VMStructs;
 193   // Allow scan_and_forward to call (private) overrides for auxiliary functions on this class
 194   template <typename SpaceType>
 195   friend void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp);
 196  private:
 197 

 198   // The remembered set for this region.
 199   // (Might want to make this "inline" later, to avoid some alloc failure
 200   // issues.)
 201   HeapRegionRemSet* _rem_set;
 202 
 203   // Auxiliary functions for scan_and_forward support.
 204   // See comments for CompactibleSpace for more information.
 205   inline HeapWord* scan_limit() const {
 206     return top();
 207   }
 208 
 209   inline bool scanned_block_is_obj(const HeapWord* addr) const {
 210     return true; // Always true, since scan_limit is top
 211   }
 212 
 213   inline size_t scanned_block_size(const HeapWord* addr) const {
 214     return HeapRegion::block_size(addr); // Avoid virtual call
 215   }
 216 
 217   void report_region_type_change(G1HeapRegionTraceType::Type to);
 218 
 219   // Returns whether the given object address refers to a dead object, and either the
 220   // size of the object (if live) or the size of the block (if dead) in size.
 221   // May
 222   // - only called with obj < top()
 223   // - not called on humongous objects or archive regions
 224   inline bool is_obj_dead_with_size(const oop obj, const G1CMBitMap* const prev_bitmap, size_t* size) const;
 225 
 226  protected:
 227   // The index of this region in the heap region sequence.
 228   uint  _hrm_index;
 229 
 230   HeapRegionType _type;
 231 
 232   // For a humongous region, region in which it starts.
 233   HeapRegion* _humongous_start_region;
 234 
 235   // True iff an attempt to evacuate an object in the region failed.
 236   bool _evacuation_failed;
 237 
 238   // Fields used by the HeapRegionSetBase class and subclasses.
 239   HeapRegion* _next;
 240   HeapRegion* _prev;
 241 #ifdef ASSERT
 242   HeapRegionSetBase* _containing_set;
 243 #endif // ASSERT
 244 
 245   // We use concurrent marking to determine the amount of live data
 246   // in each heap region.


 252 
 253   static const uint InvalidCSetIndex = UINT_MAX;
 254 
 255   // The index in the optional regions array, if this region
 256   // is considered optional during a mixed collections.
 257   uint _index_in_opt_cset;
 258 
 259   // Data for young region survivor prediction.
 260   uint  _young_index_in_cset;
 261   SurvRateGroup* _surv_rate_group;
 262   int  _age_index;
 263 
 264   // The start of the unmarked area. The unmarked area extends from this
 265   // word until the top and/or end of the region, and is the part
 266   // of the region for which no marking was done, i.e. objects may
 267   // have been allocated in this part since the last mark phase.
 268   // "prev" is the top at the start of the last completed marking.
 269   // "next" is the top at the start of the in-progress marking (if any.)
 270   HeapWord* _prev_top_at_mark_start;
 271   HeapWord* _next_top_at_mark_start;
 272   // If a collection pause is in progress, this is the top at the start
 273   // of that pause.
 274 
 275   void init_top_at_mark_start() {
 276     assert(_prev_marked_bytes == 0 &&
 277            _next_marked_bytes == 0,
 278            "Must be called after zero_marked_bytes.");
 279     HeapWord* bot = bottom();
 280     _prev_top_at_mark_start = bot;
 281     _next_top_at_mark_start = bot;
 282   }
 283 
 284   // Cached attributes used in the collection set policy information
 285 
 286   // The RSet length that was added to the total value
 287   // for the collection set.
 288   size_t _recorded_rs_length;
 289 
 290   // The predicted elapsed time that was added to total value
 291   // for the collection set.
 292   double _predicted_elapsed_time_ms;
 293 
 294   // Iterate over the references covered by the given MemRegion in a humongous
 295   // object and apply the given closure to them.
 296   // Humongous objects are allocated directly in the old-gen. So we need special
 297   // handling for concurrent processing encountering an in-progress allocation.
 298   // Returns the address after the last actually scanned or NULL if the area could
 299   // not be scanned (That should only happen when invoked concurrently with the
 300   // mutator).
 301   template <class Closure, bool is_gc_active>
 302   inline HeapWord* do_oops_on_memregion_in_humongous(MemRegion mr,
 303                                                      Closure* cl,
 304                                                      G1CollectedHeap* g1h);
 305 
 306   // Returns the block size of the given (dead, potentially having its class unloaded) object
 307   // starting at p extending to at most the prev TAMS using the given mark bitmap.
 308   inline size_t block_size_using_bitmap(const HeapWord* p, const G1CMBitMap* const prev_bitmap) const;
 309  public:
 310   HeapRegion(uint hrm_index,
 311              G1BlockOffsetTable* bot,
 312              MemRegion mr);
 313 
 314   // Initializing the HeapRegion not only resets the data structure, but also
 315   // resets the BOT for that heap region.
 316   // The default values for clear_space means that we will do the clearing if
 317   // there's clearing to be done ourselves. We also always mangle the space.
 318   virtual void initialize(MemRegion mr, bool clear_space = false, bool mangle_space = SpaceDecorator::Mangle);
 319 
 320   static int    LogOfHRGrainBytes;
 321   static int    LogOfHRGrainWords;
 322   static int    LogCardsPerRegion;
 323 
 324   static size_t GrainBytes;
 325   static size_t GrainWords;
 326   static size_t CardsPerRegion;
 327 
 328   static size_t align_up_to_region_byte_size(size_t sz) {
 329     return (sz + (size_t) GrainBytes - 1) &
 330                                       ~((1 << (size_t) LogOfHRGrainBytes) - 1);
 331   }
 332 
 333 
 334   // Returns whether a field is in the same region as the obj it points to.
 335   template <typename T>
 336   static bool is_in_same_region(T* p, oop obj) {
 337     assert(p != NULL, "p can't be NULL");
 338     assert(obj != NULL, "obj can't be NULL");


 347   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
 348   // CardsPerRegion). All those fields are considered constant
 349   // throughout the JVM's execution, therefore they should only be set
 350   // up once during initialization time.
 351   static void setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size);
 352 
 353   // All allocated blocks are occupied by objects in a HeapRegion
 354   bool block_is_obj(const HeapWord* p) const;
 355 
 356   // Returns whether the given object is dead based on TAMS and bitmap.
 357   bool is_obj_dead(const oop obj, const G1CMBitMap* const prev_bitmap) const;
 358 
 359   // Returns the object size for all valid block starts
 360   // and the amount of unallocated words if called on top()
 361   size_t block_size(const HeapWord* p) const;
 362 
 363   // Scans through the region using the bitmap to determine what
 364   // objects to call size_t ApplyToMarkedClosure::apply(oop) for.
 365   template<typename ApplyToMarkedClosure>
 366   inline void apply_to_marked_objects(G1CMBitMap* bitmap, ApplyToMarkedClosure* closure);
 367   // Override for scan_and_forward support.
 368   void prepare_for_compaction(CompactPoint* cp);
 369   // Update heap region to be consistent after compaction.
 370   void complete_compaction();
 371 
 372   inline HeapWord* par_allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* word_size);
 373   inline HeapWord* allocate_no_bot_updates(size_t word_size);
 374   inline HeapWord* allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* actual_size);
 375 
 376   // If this region is a member of a HeapRegionManager, the index in that
 377   // sequence, otherwise -1.
 378   uint hrm_index() const { return _hrm_index; }
 379 
 380   // The number of bytes marked live in the region in the last marking phase.
 381   size_t marked_bytes()    { return _prev_marked_bytes; }
 382   size_t live_bytes() {
 383     return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
 384   }
 385 
 386   // The number of bytes counted in the next marking.
 387   size_t next_marked_bytes() { return _next_marked_bytes; }
 388   // The number of bytes live wrt the next marking.


 690   void verify_strong_code_roots(VerifyOption vo, bool* failures) const;
 691 
 692   void print() const;
 693   void print_on(outputStream* st) const;
 694 
 695   // vo == UsePrevMarking -> use "prev" marking information,
 696   // vo == UseNextMarking -> use "next" marking information
 697   // vo == UseFullMarking -> use "next" marking bitmap but no TAMS
 698   //
 699   // NOTE: Only the "prev" marking information is guaranteed to be
 700   // consistent most of the time, so most calls to this should use
 701   // vo == UsePrevMarking.
 702   // Currently, there is only one case where this is called with
 703   // vo == UseNextMarking, which is to verify the "next" marking
 704   // information at the end of remark.
 705   // Currently there is only one place where this is called with
 706   // vo == UseFullMarking, which is to verify the marking during a
 707   // full GC.
 708   void verify(VerifyOption vo, bool *failures) const;
 709 
 710   // Override; it uses the "prev" marking information
 711   virtual void verify() const;
 712 
 713   void verify_rem_set(VerifyOption vo, bool *failures) const;
 714   void verify_rem_set() const;
 715 };
 716 
 717 // HeapRegionClosure is used for iterating over regions.
 718 // Terminates the iteration when the "do_heap_region" method returns "true".
 719 class HeapRegionClosure : public StackObj {
 720   friend class HeapRegionManager;
 721   friend class G1CollectionSet;
 722   friend class G1CollectionSetCandidates;
 723 
 724   bool _is_complete;
 725   void set_incomplete() { _is_complete = false; }
 726 
 727  public:
 728   HeapRegionClosure(): _is_complete(true) {}
 729 
 730   // Typically called on each region until it returns true.
 731   virtual bool do_heap_region(HeapRegion* r) = 0;
 732 
 733   // True after iteration if the closure was applied to all heap regions
 734   // and returned "false" in all cases.
 735   bool is_complete() { return _is_complete; }
 736 };
 737 
 738 #endif // SHARE_GC_G1_HEAPREGION_HPP


  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_GC_G1_HEAPREGION_HPP
  26 #define SHARE_GC_G1_HEAPREGION_HPP
  27 
  28 #include "gc/g1/g1BlockOffsetTable.hpp"
  29 #include "gc/g1/g1HeapRegionTraceType.hpp"
  30 #include "gc/g1/heapRegionTracer.hpp"
  31 #include "gc/g1/heapRegionType.hpp"
  32 #include "gc/g1/survRateGroup.hpp"
  33 #include "gc/shared/ageTable.hpp"


  34 #include "gc/shared/spaceDecorator.hpp"
  35 #include "gc/shared/verifyOption.hpp"
  36 #include "runtime/mutex.hpp"
  37 #include "utilities/macros.hpp"
  38 




















  39 class G1CollectedHeap;
  40 class G1CMBitMap;

  41 class HeapRegionRemSet;
  42 class HeapRegion;
  43 class HeapRegionSetBase;
  44 class nmethod;
  45 
  46 #define HR_FORMAT "%u:(%s)[" PTR_FORMAT "," PTR_FORMAT "," PTR_FORMAT "]"
  47 #define HR_FORMAT_PARAMS(_hr_) \
  48                 (_hr_)->hrm_index(), \
  49                 (_hr_)->get_short_type_str(), \
  50                 p2i((_hr_)->bottom()), p2i((_hr_)->top()), p2i((_hr_)->end())
  51 
  52 // sentinel value for hrm_index
  53 #define G1_NO_HRM_INDEX ((uint) -1)
  54 
  55 // A HeapRegion is the smallest piece of a G1CollectedHeap that
  56 // can be collected independently.
  57 
  58 // Each heap region is self contained. top() and end() can never
  59 // be set beyond the end of the region. For humongous objects,
  60 // the first region is a StartsHumongous region. If the humongous
  61 // object is larger than a heap region, the following regions will
  62 // be of type ContinuesHumongous. In this case the top() of the
  63 // StartHumongous region and all ContinuesHumongous regions except
  64 // the last will point to their own end. The last ContinuesHumongous
  65 // region may have top() equal the end of object if there isn't
  66 // room for filler objects to pad out to the end of the region.
  67 class HeapRegion : public CHeapObj<mtGC> {









  68   friend class VMStructs;
  69 
  70   HeapWord* _bottom;
  71   HeapWord* _end;
  72 
  73   HeapWord* volatile _top;
  74   HeapWord* _compaction_top;
  75 
  76   G1BlockOffsetTablePart _bot_part;
  77   Mutex _par_alloc_lock;
  78   // When we need to retire an allocation region, while other threads
  79   // are also concurrently trying to allocate into it, we typically
  80   // allocate a dummy object at the end of the region to ensure that
  81   // no more allocations can take place in it. However, sometimes we
  82   // want to know where the end of the last "real" object we allocated
  83   // into the region was and this is what this keeps track.
  84   HeapWord* _pre_dummy_top;
  85 
  86 public:
  87   void set_bottom(HeapWord* value) { _bottom = value; }
  88   HeapWord* bottom() const         { return _bottom; }
  89 
  90   void set_end(HeapWord* value)    { _end = value; }
  91   HeapWord* end() const            { return _end;    }
  92 
  93   void set_compaction_top(HeapWord* compaction_top) { _compaction_top = compaction_top; }
  94   HeapWord* compaction_top() const { return _compaction_top; }
  95 
  96   void set_top(HeapWord* value) { _top = value; }
  97   HeapWord* top() const { return _top; }
  98 
  99   // Returns true iff the given the heap  region contains the
 100   // given address as part of an allocated object. This may
 101   // be a potentially, so we restrict its use to assertion checks only.
 102   bool is_in(const void* p) const {
 103     return is_in_reserved(p);
 104   }
 105   bool is_in(oop obj) const {
 106     return is_in((void*)obj);
 107   }
 108   // Returns true iff the given reserved memory of the space contains the
 109   // given address.
 110   bool is_in_reserved(const void* p) const { return _bottom <= p && p < _end; }
 111 
 112   size_t capacity()     const { return byte_size(bottom(), end()); }
 113   size_t used() const { return byte_size(bottom(), top()); }
 114   size_t free() const { return byte_size(top(), end()); }
 115 
 116   bool is_empty() const { return used() == 0; }
 117 
 118 private:
 119   void reset_after_compaction() { set_top(compaction_top()); }
 120 
 121   // Try to allocate at least min_word_size and up to desired_size from this region.
 122   // Returns NULL if not possible, otherwise sets actual_word_size to the amount of
 123   // space allocated.
 124   // This version assumes that all allocation requests to this HeapRegion are properly
 125   // synchronized.
 126   inline HeapWord* allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
 127   // Try to allocate at least min_word_size and up to desired_size from this HeapRegion.
 128   // Returns NULL if not possible, otherwise sets actual_word_size to the amount of
 129   // space allocated.
 130   // This version synchronizes with other calls to par_allocate_impl().
 131   inline HeapWord* par_allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
 132 
 133   void mangle_unused_area() PRODUCT_RETURN;







 134 
 135 public:
 136   void object_iterate(ObjectClosure* blk);




 137 
 138   // See the comment above in the declaration of _pre_dummy_top for an
 139   // explanation of what it is.
 140   void set_pre_dummy_top(HeapWord* pre_dummy_top) {
 141     assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
 142     _pre_dummy_top = pre_dummy_top;
 143   }
 144   
 145   HeapWord* pre_dummy_top() {
 146     return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
 147   }
 148   void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
 149 
 150   void clear(bool mangle_space);
 151 
 152   HeapWord* block_start(const void* p);
 153   HeapWord* block_start_const(const void* p) const;
 154 
 155   // Allocation (return NULL if full).  Assumes the caller has established
 156   // mutually exclusive access to the HeapRegion.
 157   HeapWord* allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
 158   // Allocation (return NULL if full).  Enforces mutual exclusion internally.
 159   HeapWord* par_allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
 160 
 161   HeapWord* allocate(size_t word_size);
 162   HeapWord* par_allocate(size_t word_size);
 163 
 164   HeapWord* saved_mark_word() const { ShouldNotReachHere(); return NULL; }
 165 
 166   // MarkSweep support phase3
 167   HeapWord* initialize_threshold();
 168   HeapWord* cross_threshold(HeapWord* start, HeapWord* end);


 169 
 170   void reset_bot() {
 171     _bot_part.reset_bot();
 172   }
 173 
 174   void print_bot_on(outputStream* out) {
 175     _bot_part.print_on(out);
 176   }








 177 
 178 private:
 179   // The remembered set for this region.


 180   HeapRegionRemSet* _rem_set;
 181 














 182   void report_region_type_change(G1HeapRegionTraceType::Type to);
 183 
 184   // Returns whether the given object address refers to a dead object, and either the
 185   // size of the object (if live) or the size of the block (if dead) in size.
 186   // May
 187   // - only called with obj < top()
 188   // - not called on humongous objects or archive regions
 189   inline bool is_obj_dead_with_size(const oop obj, const G1CMBitMap* const prev_bitmap, size_t* size) const;
 190 

 191   // The index of this region in the heap region sequence.
 192   uint  _hrm_index;
 193 
 194   HeapRegionType _type;
 195 
 196   // For a humongous region, region in which it starts.
 197   HeapRegion* _humongous_start_region;
 198 
 199   // True iff an attempt to evacuate an object in the region failed.
 200   bool _evacuation_failed;
 201 
 202   // Fields used by the HeapRegionSetBase class and subclasses.
 203   HeapRegion* _next;
 204   HeapRegion* _prev;
 205 #ifdef ASSERT
 206   HeapRegionSetBase* _containing_set;
 207 #endif // ASSERT
 208 
 209   // We use concurrent marking to determine the amount of live data
 210   // in each heap region.


 216 
 217   static const uint InvalidCSetIndex = UINT_MAX;
 218 
 219   // The index in the optional regions array, if this region
 220   // is considered optional during a mixed collections.
 221   uint _index_in_opt_cset;
 222 
 223   // Data for young region survivor prediction.
 224   uint  _young_index_in_cset;
 225   SurvRateGroup* _surv_rate_group;
 226   int  _age_index;
 227 
 228   // The start of the unmarked area. The unmarked area extends from this
 229   // word until the top and/or end of the region, and is the part
 230   // of the region for which no marking was done, i.e. objects may
 231   // have been allocated in this part since the last mark phase.
 232   // "prev" is the top at the start of the last completed marking.
 233   // "next" is the top at the start of the in-progress marking (if any.)
 234   HeapWord* _prev_top_at_mark_start;
 235   HeapWord* _next_top_at_mark_start;


 236 
 237   void init_top_at_mark_start() {
 238     assert(_prev_marked_bytes == 0 &&
 239            _next_marked_bytes == 0,
 240            "Must be called after zero_marked_bytes.");
 241     HeapWord* bot = bottom();
 242     _prev_top_at_mark_start = bot;
 243     _next_top_at_mark_start = bot;
 244   }
 245 
 246   // Cached attributes used in the collection set policy information
 247 
 248   // The RSet length that was added to the total value
 249   // for the collection set.
 250   size_t _recorded_rs_length;
 251 
 252   // The predicted elapsed time that was added to total value
 253   // for the collection set.
 254   double _predicted_elapsed_time_ms;
 255 
 256   // Iterate over the references covered by the given MemRegion in a humongous
 257   // object and apply the given closure to them.
 258   // Humongous objects are allocated directly in the old-gen. So we need special
 259   // handling for concurrent processing encountering an in-progress allocation.
 260   // Returns the address after the last actually scanned or NULL if the area could
 261   // not be scanned (That should only happen when invoked concurrently with the
 262   // mutator).
 263   template <class Closure, bool is_gc_active>
 264   inline HeapWord* do_oops_on_memregion_in_humongous(MemRegion mr,
 265                                                      Closure* cl,
 266                                                      G1CollectedHeap* g1h);
 267 
 268   // Returns the block size of the given (dead, potentially having its class unloaded) object
 269   // starting at p extending to at most the prev TAMS using the given mark bitmap.
 270   inline size_t block_size_using_bitmap(const HeapWord* p, const G1CMBitMap* const prev_bitmap) const;
 271 public:
 272   HeapRegion(uint hrm_index, G1BlockOffsetTable* bot, MemRegion mr);


 273 
 274   // Initializing the HeapRegion not only resets the data structure, but also
 275   // resets the BOT for that heap region.
 276   // The default values for clear_space means that we will do the clearing if
 277   // there's clearing to be done ourselves. We also always mangle the space.
 278   void initialize(MemRegion mr, bool clear_space = false, bool mangle_space = SpaceDecorator::Mangle);
 279 
 280   static int    LogOfHRGrainBytes;
 281   static int    LogOfHRGrainWords;
 282   static int    LogCardsPerRegion;
 283 
 284   static size_t GrainBytes;
 285   static size_t GrainWords;
 286   static size_t CardsPerRegion;
 287 
 288   static size_t align_up_to_region_byte_size(size_t sz) {
 289     return (sz + (size_t) GrainBytes - 1) &
 290                                       ~((1 << (size_t) LogOfHRGrainBytes) - 1);
 291   }
 292 
 293 
 294   // Returns whether a field is in the same region as the obj it points to.
 295   template <typename T>
 296   static bool is_in_same_region(T* p, oop obj) {
 297     assert(p != NULL, "p can't be NULL");
 298     assert(obj != NULL, "obj can't be NULL");


 307   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
 308   // CardsPerRegion). All those fields are considered constant
 309   // throughout the JVM's execution, therefore they should only be set
 310   // up once during initialization time.
 311   static void setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size);
 312 
 313   // All allocated blocks are occupied by objects in a HeapRegion
 314   bool block_is_obj(const HeapWord* p) const;
 315 
 316   // Returns whether the given object is dead based on TAMS and bitmap.
 317   bool is_obj_dead(const oop obj, const G1CMBitMap* const prev_bitmap) const;
 318 
 319   // Returns the object size for all valid block starts
 320   // and the amount of unallocated words if called on top()
 321   size_t block_size(const HeapWord* p) const;
 322 
 323   // Scans through the region using the bitmap to determine what
 324   // objects to call size_t ApplyToMarkedClosure::apply(oop) for.
 325   template<typename ApplyToMarkedClosure>
 326   inline void apply_to_marked_objects(G1CMBitMap* bitmap, ApplyToMarkedClosure* closure);


 327   // Update heap region to be consistent after compaction.
 328   void complete_compaction();
 329 
 330   inline HeapWord* par_allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* word_size);
 331   inline HeapWord* allocate_no_bot_updates(size_t word_size);
 332   inline HeapWord* allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* actual_size);
 333 
 334   // If this region is a member of a HeapRegionManager, the index in that
 335   // sequence, otherwise -1.
 336   uint hrm_index() const { return _hrm_index; }
 337 
 338   // The number of bytes marked live in the region in the last marking phase.
 339   size_t marked_bytes()    { return _prev_marked_bytes; }
 340   size_t live_bytes() {
 341     return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
 342   }
 343 
 344   // The number of bytes counted in the next marking.
 345   size_t next_marked_bytes() { return _next_marked_bytes; }
 346   // The number of bytes live wrt the next marking.


 648   void verify_strong_code_roots(VerifyOption vo, bool* failures) const;
 649 
 650   void print() const;
 651   void print_on(outputStream* st) const;
 652 
 653   // vo == UsePrevMarking -> use "prev" marking information,
 654   // vo == UseNextMarking -> use "next" marking information
 655   // vo == UseFullMarking -> use "next" marking bitmap but no TAMS
 656   //
 657   // NOTE: Only the "prev" marking information is guaranteed to be
 658   // consistent most of the time, so most calls to this should use
 659   // vo == UsePrevMarking.
 660   // Currently, there is only one case where this is called with
 661   // vo == UseNextMarking, which is to verify the "next" marking
 662   // information at the end of remark.
 663   // Currently there is only one place where this is called with
 664   // vo == UseFullMarking, which is to verify the marking during a
 665   // full GC.
 666   void verify(VerifyOption vo, bool *failures) const;
 667 
 668   // Verify using the "prev" marking information
 669   void verify() const;
 670 
 671   void verify_rem_set(VerifyOption vo, bool *failures) const;
 672   void verify_rem_set() const;
 673 };
 674 
 675 // HeapRegionClosure is used for iterating over regions.
 676 // Terminates the iteration when the "do_heap_region" method returns "true".
 677 class HeapRegionClosure : public StackObj {
 678   friend class HeapRegionManager;
 679   friend class G1CollectionSet;
 680   friend class G1CollectionSetCandidates;
 681 
 682   bool _is_complete;
 683   void set_incomplete() { _is_complete = false; }
 684 
 685 public:
 686   HeapRegionClosure(): _is_complete(true) {}
 687 
 688   // Typically called on each region until it returns true.
 689   virtual bool do_heap_region(HeapRegion* r) = 0;
 690 
 691   // True after iteration if the closure was applied to all heap regions
 692   // and returned "false" in all cases.
 693   bool is_complete() { return _is_complete; }
 694 };
 695 
 696 #endif // SHARE_GC_G1_HEAPREGION_HPP
< prev index next >