< prev index next >

src/share/vm/opto/compile.cpp

Print this page




1906 //----------------------------Finish_Warm--------------------------------------
1907 void Compile::Finish_Warm() {
1908   if (!InlineWarmCalls)  return;
1909   if (failing())  return;
1910   if (warm_calls() == NULL)  return;
1911 
1912   // Clean up loose ends, if we are out of space for inlining.
1913   WarmCallInfo* call;
1914   while ((call = pop_warm_call()) != NULL) {
1915     call->make_cold();
1916   }
1917 }
1918 
1919 //---------------------cleanup_loop_predicates-----------------------
1920 // Remove the opaque nodes that protect the predicates so that all unused
1921 // checks and uncommon_traps will be eliminated from the ideal graph
1922 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1923   if (predicate_count()==0) return;
1924   for (int i = predicate_count(); i > 0; i--) {
1925     Node * n = predicate_opaque1_node(i-1);
1926     assert(n->Opcode() == Op_Opaque1, "must be");
1927     igvn.replace_node(n, n->in(1));
1928   }
1929   assert(predicate_count()==0, "should be clean!");
1930 }
1931 
1932 void Compile::add_range_check_cast(Node* n) {
1933   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1934   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1935   _range_check_casts->append(n);
1936 }
1937 
1938 // Remove all range check dependent CastIINodes.
1939 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
1940   for (int i = range_check_cast_count(); i > 0; i--) {
1941     Node* cast = range_check_cast_node(i-1);
1942     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1943     igvn.replace_node(cast, cast->in(1));
1944   }
1945   assert(range_check_cast_count() == 0, "should be empty");
1946 }


2589 
2590   int  get_call_count  () const { return _call_count  ; }
2591   int  get_float_count () const { return _float_count ; }
2592   int  get_double_count() const { return _double_count; }
2593   int  get_java_call_count() const { return _java_call_count; }
2594   int  get_inner_loop_count() const { return _inner_loop_count; }
2595 };
2596 
2597 #ifdef ASSERT
2598 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2599   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2600   // Make sure the offset goes inside the instance layout.
2601   return k->contains_field_offset(tp->offset());
2602   // Note that OffsetBot and OffsetTop are very negative.
2603 }
2604 #endif
2605 
2606 // Eliminate trivially redundant StoreCMs and accumulate their
2607 // precedence edges.
2608 void Compile::eliminate_redundant_card_marks(Node* n) {
2609   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2610   if (n->in(MemNode::Address)->outcnt() > 1) {
2611     // There are multiple users of the same address so it might be
2612     // possible to eliminate some of the StoreCMs
2613     Node* mem = n->in(MemNode::Memory);
2614     Node* adr = n->in(MemNode::Address);
2615     Node* val = n->in(MemNode::ValueIn);
2616     Node* prev = n;
2617     bool done = false;
2618     // Walk the chain of StoreCMs eliminating ones that match.  As
2619     // long as it's a chain of single users then the optimization is
2620     // safe.  Eliminating partially redundant StoreCMs would require
2621     // cloning copies down the other paths.
2622     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2623       if (adr == mem->in(MemNode::Address) &&
2624           val == mem->in(MemNode::ValueIn)) {
2625         // redundant StoreCM
2626         if (mem->req() > MemNode::OopStore) {
2627           // Hasn't been processed by this code yet.
2628           n->add_prec(mem->in(MemNode::OopStore));
2629         } else {
2630           // Already converted to precedence edge
2631           for (uint i = mem->req(); i < mem->len(); i++) {
2632             // Accumulate any precedence edges
2633             if (mem->in(i) != NULL) {
2634               n->add_prec(mem->in(i));
2635             }
2636           }
2637           // Everything above this point has been processed.
2638           done = true;
2639         }
2640         // Eliminate the previous StoreCM
2641         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2642         assert(mem->outcnt() == 0, "should be dead");
2643         mem->disconnect_inputs(NULL, this);
2644       } else {
2645         prev = mem;
2646       }
2647       mem = prev->in(MemNode::Memory);
2648     }
2649   }
2650 }
2651 
2652 //------------------------------final_graph_reshaping_impl----------------------
2653 // Implement items 1-5 from final_graph_reshaping below.
2654 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2655 
2656   if ( n->outcnt() == 0 ) return; // dead node
2657   uint nop = n->Opcode();
2658 
2659   // Check for 2-input instruction with "last use" on right input.
2660   // Swap to left input.  Implements item (2).
2661   if( n->req() == 3 &&          // two-input instruction
2662       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2663       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2664       n->in(2)->outcnt() == 1 &&// right use IS a last use
2665       !n->in(2)->is_Con() ) {   // right use is not a constant
2666     // Check for commutative opcode
2667     switch( nop ) {
2668     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2669     case Op_MaxI:  case Op_MinI:
2670     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2671     case Op_AndL:  case Op_XorL:  case Op_OrL:
2672     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2673       // Move "last use" input to left by swapping inputs
2674       n->swap_edges(1, 2);
2675       break;
2676     }
2677     default:
2678       break;
2679     }
2680   }
2681 
2682 #ifdef ASSERT
2683   if( n->is_Mem() ) {
2684     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2685     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2686             // oop will be recorded in oop map if load crosses safepoint
2687             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2688                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2689             "raw memory operations should have control edge");
2690   }
2691 #endif
2692   // Count FPU ops and common calls, implements item (3)
2693   switch( nop ) {
2694   // Count all float operations that may use FPU
2695   case Op_AddF:
2696   case Op_SubF:
2697   case Op_MulF:
2698   case Op_DivF:
2699   case Op_NegF:
2700   case Op_ModF:
2701   case Op_ConvI2F:
2702   case Op_ConF:
2703   case Op_CmpF:
2704   case Op_CmpF3:
2705   // case Op_ConvL2F: // longs are split into 32-bit halves
2706     frc.inc_float_count();
2707     break;
2708 
2709   case Op_ConvF2D:
2710   case Op_ConvD2F:
2711     frc.inc_float_count();
2712     frc.inc_double_count();
2713     break;
2714 
2715   // Count all double operations that may use FPU
2716   case Op_AddD:
2717   case Op_SubD:
2718   case Op_MulD:
2719   case Op_DivD:
2720   case Op_NegD:
2721   case Op_ModD:
2722   case Op_ConvI2D:
2723   case Op_ConvD2I:
2724   // case Op_ConvL2D: // handled by leaf call
2725   // case Op_ConvD2L: // handled by leaf call
2726   case Op_ConD:
2727   case Op_CmpD:
2728   case Op_CmpD3:
2729     frc.inc_double_count();
2730     break;
2731   case Op_Opaque1:              // Remove Opaque Nodes before matching
2732   case Op_Opaque2:              // Remove Opaque Nodes before matching
2733   case Op_Opaque3:
2734     n->subsume_by(n->in(1), this);
2735     break;
2736   case Op_CallStaticJava:
2737   case Op_CallJava:
2738   case Op_CallDynamicJava:
2739     frc.inc_java_call_count(); // Count java call site;
2740   case Op_CallRuntime:
2741   case Op_CallLeaf:
2742   case Op_CallLeafNoFP: {
2743     assert( n->is_Call(), "" );
2744     CallNode *call = n->as_Call();
2745     // Count call sites where the FP mode bit would have to be flipped.
2746     // Do not count uncommon runtime calls:
2747     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2748     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2749     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2750       frc.inc_call_count();   // Count the call site
2751     } else {                  // See if uncommon argument is shared
2752       Node *n = call->in(TypeFunc::Parms);
2753       int nop = n->Opcode();
2754       // Clone shared simple arguments to uncommon calls, item (1).
2755       if( n->outcnt() > 1 &&
2756           !n->is_Proj() &&
2757           nop != Op_CreateEx &&
2758           nop != Op_CheckCastPP &&
2759           nop != Op_DecodeN &&
2760           nop != Op_DecodeNKlass &&
2761           !n->is_Mem() ) {
2762         Node *x = n->clone();
2763         call->set_req( TypeFunc::Parms, x );
2764       }
2765     }
2766     break;
2767   }
2768 
2769   case Op_StoreD:
2770   case Op_LoadD:
2771   case Op_LoadD_unaligned:
2772     frc.inc_double_count();
2773     goto handle_mem;
2774   case Op_StoreF:
2775   case Op_LoadF:
2776     frc.inc_float_count();
2777     goto handle_mem;
2778 
2779   case Op_StoreCM:
2780     {
2781       // Convert OopStore dependence into precedence edge
2782       Node* prec = n->in(MemNode::OopStore);
2783       n->del_req(MemNode::OopStore);
2784       n->add_prec(prec);
2785       eliminate_redundant_card_marks(n);
2786     }
2787 
2788     // fall through
2789 
2790   case Op_StoreB:
2791   case Op_StoreC:
2792   case Op_StorePConditional:
2793   case Op_StoreI:
2794   case Op_StoreL:
2795   case Op_StoreIConditional:
2796   case Op_StoreLConditional:
2797   case Op_CompareAndSwapB:
2798   case Op_CompareAndSwapS:
2799   case Op_CompareAndSwapI:
2800   case Op_CompareAndSwapL:
2801   case Op_CompareAndSwapP:
2802   case Op_CompareAndSwapN:
2803   case Op_WeakCompareAndSwapB:
2804   case Op_WeakCompareAndSwapS:
2805   case Op_WeakCompareAndSwapI:
2806   case Op_WeakCompareAndSwapL:
2807   case Op_WeakCompareAndSwapP:
2808   case Op_WeakCompareAndSwapN:
2809   case Op_CompareAndExchangeB:
2810   case Op_CompareAndExchangeS:
2811   case Op_CompareAndExchangeI:
2812   case Op_CompareAndExchangeL:
2813   case Op_CompareAndExchangeP:
2814   case Op_CompareAndExchangeN:
2815   case Op_GetAndAddS:
2816   case Op_GetAndAddB:
2817   case Op_GetAndAddI:
2818   case Op_GetAndAddL:
2819   case Op_GetAndSetS:
2820   case Op_GetAndSetB:
2821   case Op_GetAndSetI:
2822   case Op_GetAndSetL:
2823   case Op_GetAndSetP:
2824   case Op_GetAndSetN:
2825   case Op_StoreP:
2826   case Op_StoreN:
2827   case Op_StoreNKlass:
2828   case Op_LoadB:
2829   case Op_LoadUB:
2830   case Op_LoadUS:
2831   case Op_LoadI:
2832   case Op_LoadKlass:
2833   case Op_LoadNKlass:
2834   case Op_LoadL:
2835   case Op_LoadL_unaligned:
2836   case Op_LoadPLocked:
2837   case Op_LoadP:
2838   case Op_LoadN:
2839   case Op_LoadRange:
2840   case Op_LoadS: {
2841   handle_mem:
2842 #ifdef ASSERT
2843     if( VerifyOptoOopOffsets ) {
2844       assert( n->is_Mem(), "" );
2845       MemNode *mem  = (MemNode*)n;
2846       // Check to see if address types have grounded out somehow.
2847       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2848       assert( !tp || oop_offset_is_sane(tp), "" );
2849     }
2850 #endif
2851     break;
2852   }
2853 
2854   case Op_AddP: {               // Assert sane base pointers
2855     Node *addp = n->in(AddPNode::Address);
2856     assert( !addp->is_AddP() ||
2857             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2858             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2859             "Base pointers must match (addp %u)", addp->_idx );
2860 #ifdef _LP64
2861     if ((UseCompressedOops || UseCompressedClassPointers) &&
2862         addp->Opcode() == Op_ConP &&
2863         addp == n->in(AddPNode::Base) &&
2864         n->in(AddPNode::Offset)->is_Con()) {
2865       // Use addressing with narrow klass to load with offset on x86.
2866       // On sparc loading 32-bits constant and decoding it have less
2867       // instructions (4) then load 64-bits constant (7).
2868       // Do this transformation here since IGVN will convert ConN back to ConP.
2869       const Type* t = addp->bottom_type();
2870       if (t->isa_oopptr() || t->isa_klassptr()) {
2871         Node* nn = NULL;
2872 
2873         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2874 
2875         // Look for existing ConN node of the same exact type.
2876         Node* r  = root();
2877         uint cnt = r->outcnt();
2878         for (uint i = 0; i < cnt; i++) {
2879           Node* m = r->raw_out(i);
2880           if (m!= NULL && m->Opcode() == op &&
2881               m->bottom_type()->make_ptr() == t) {
2882             nn = m;
2883             break;
2884           }
2885         }
2886         if (nn != NULL) {
2887           // Decode a narrow oop to match address
2888           // [R12 + narrow_oop_reg<<3 + offset]
2889           if (t->isa_oopptr()) {
2890             nn = new DecodeNNode(nn, t);
2891           } else {
2892             nn = new DecodeNKlassNode(nn, t);
2893           }


2903                 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
2904                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
2905               }
2906 #endif
2907             }
2908           }
2909           n->set_req(AddPNode::Base, nn);
2910           n->set_req(AddPNode::Address, nn);
2911           if (addp->outcnt() == 0) {
2912             addp->disconnect_inputs(NULL, this);
2913           }
2914         }
2915       }
2916     }
2917 #endif
2918     // platform dependent reshaping of the address expression
2919     reshape_address(n->as_AddP());
2920     break;
2921   }
2922 
2923   case Op_CastPP: {
2924     // Remove CastPP nodes to gain more freedom during scheduling but
2925     // keep the dependency they encode as control or precedence edges
2926     // (if control is set already) on memory operations. Some CastPP
2927     // nodes don't have a control (don't carry a dependency): skip
2928     // those.
2929     if (n->in(0) != NULL) {
2930       ResourceMark rm;
2931       Unique_Node_List wq;
2932       wq.push(n);
2933       for (uint next = 0; next < wq.size(); ++next) {
2934         Node *m = wq.at(next);
2935         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
2936           Node* use = m->fast_out(i);
2937           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
2938             use->ensure_control_or_add_prec(n->in(0));
2939           } else {
2940             switch(use->Opcode()) {
2941             case Op_AddP:
2942             case Op_DecodeN:
2943             case Op_DecodeNKlass:
2944             case Op_CheckCastPP:
2945             case Op_CastPP:
2946               wq.push(use);
2947               break;
2948             }
2949           }
2950         }
2951       }
2952     }
2953     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
2954     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2955       Node* in1 = n->in(1);
2956       const Type* t = n->bottom_type();
2957       Node* new_in1 = in1->clone();
2958       new_in1->as_DecodeN()->set_type(t);
2959 
2960       if (!Matcher::narrow_oop_use_complex_address()) {
2961         //
2962         // x86, ARM and friends can handle 2 adds in addressing mode
2963         // and Matcher can fold a DecodeN node into address by using
2964         // a narrow oop directly and do implicit NULL check in address:
2965         //


2976         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2977         // to keep the information to which NULL check the new DecodeN node
2978         // corresponds to use it as value in implicit_null_check().
2979         //
2980         new_in1->set_req(0, n->in(0));
2981       }
2982 
2983       n->subsume_by(new_in1, this);
2984       if (in1->outcnt() == 0) {
2985         in1->disconnect_inputs(NULL, this);
2986       }
2987     } else {
2988       n->subsume_by(n->in(1), this);
2989       if (n->outcnt() == 0) {
2990         n->disconnect_inputs(NULL, this);
2991       }
2992     }
2993     break;
2994   }
2995 #ifdef _LP64
2996   case Op_CmpP:
2997     // Do this transformation here to preserve CmpPNode::sub() and
2998     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2999     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3000       Node* in1 = n->in(1);
3001       Node* in2 = n->in(2);
3002       if (!in1->is_DecodeNarrowPtr()) {
3003         in2 = in1;
3004         in1 = n->in(2);
3005       }
3006       assert(in1->is_DecodeNarrowPtr(), "sanity");
3007 
3008       Node* new_in2 = NULL;
3009       if (in2->is_DecodeNarrowPtr()) {
3010         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3011         new_in2 = in2->in(1);
3012       } else if (in2->Opcode() == Op_ConP) {
3013         const Type* t = in2->bottom_type();
3014         if (t == TypePtr::NULL_PTR) {
3015           assert(in1->is_DecodeN(), "compare klass to null?");
3016           // Don't convert CmpP null check into CmpN if compressed
3017           // oops implicit null check is not generated.
3018           // This will allow to generate normal oop implicit null check.
3019           if (Matcher::gen_narrow_oop_implicit_null_checks())
3020             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3021           //
3022           // This transformation together with CastPP transformation above
3023           // will generated code for implicit NULL checks for compressed oops.
3024           //
3025           // The original code after Optimize()
3026           //
3027           //    LoadN memory, narrow_oop_reg
3028           //    decode narrow_oop_reg, base_reg
3029           //    CmpP base_reg, NULL
3030           //    CastPP base_reg // NotNull
3031           //    Load [base_reg + offset], val_reg
3032           //


3057           //
3058         } else if (t->isa_oopptr()) {
3059           new_in2 = ConNode::make(t->make_narrowoop());
3060         } else if (t->isa_klassptr()) {
3061           new_in2 = ConNode::make(t->make_narrowklass());
3062         }
3063       }
3064       if (new_in2 != NULL) {
3065         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3066         n->subsume_by(cmpN, this);
3067         if (in1->outcnt() == 0) {
3068           in1->disconnect_inputs(NULL, this);
3069         }
3070         if (in2->outcnt() == 0) {
3071           in2->disconnect_inputs(NULL, this);
3072         }
3073       }
3074     }
3075     break;
3076 
3077   case Op_DecodeN:
3078   case Op_DecodeNKlass:
3079     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3080     // DecodeN could be pinned when it can't be fold into
3081     // an address expression, see the code for Op_CastPP above.
3082     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3083     break;
3084 
3085   case Op_EncodeP:
3086   case Op_EncodePKlass: {
3087     Node* in1 = n->in(1);
3088     if (in1->is_DecodeNarrowPtr()) {
3089       n->subsume_by(in1->in(1), this);
3090     } else if (in1->Opcode() == Op_ConP) {
3091       const Type* t = in1->bottom_type();
3092       if (t == TypePtr::NULL_PTR) {
3093         assert(t->isa_oopptr(), "null klass?");
3094         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3095       } else if (t->isa_oopptr()) {
3096         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3097       } else if (t->isa_klassptr()) {
3098         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3099       }
3100     }
3101     if (in1->outcnt() == 0) {
3102       in1->disconnect_inputs(NULL, this);
3103     }
3104     break;
3105   }
3106 
3107   case Op_Proj: {
3108     if (OptimizeStringConcat) {
3109       ProjNode* p = n->as_Proj();
3110       if (p->_is_io_use) {
3111         // Separate projections were used for the exception path which
3112         // are normally removed by a late inline.  If it wasn't inlined
3113         // then they will hang around and should just be replaced with
3114         // the original one.
3115         Node* proj = NULL;
3116         // Replace with just one
3117         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3118           Node *use = i.get();
3119           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3120             proj = use;
3121             break;
3122           }
3123         }
3124         assert(proj != NULL, "must be found");
3125         p->subsume_by(proj, this);
3126       }
3127     }
3128     break;
3129   }
3130 
3131   case Op_Phi:
3132     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3133       // The EncodeP optimization may create Phi with the same edges
3134       // for all paths. It is not handled well by Register Allocator.
3135       Node* unique_in = n->in(1);
3136       assert(unique_in != NULL, "");
3137       uint cnt = n->req();
3138       for (uint i = 2; i < cnt; i++) {
3139         Node* m = n->in(i);
3140         assert(m != NULL, "");
3141         if (unique_in != m)
3142           unique_in = NULL;
3143       }
3144       if (unique_in != NULL) {
3145         n->subsume_by(unique_in, this);
3146       }
3147     }
3148     break;
3149 
3150 #endif
3151 
3152 #ifdef ASSERT
3153   case Op_CastII:
3154     // Verify that all range check dependent CastII nodes were removed.
3155     if (n->isa_CastII()->has_range_check()) {
3156       n->dump(3);
3157       assert(false, "Range check dependent CastII node was not removed");
3158     }
3159     break;
3160 #endif
3161 
3162   case Op_ModI:
3163     if (UseDivMod) {
3164       // Check if a%b and a/b both exist
3165       Node* d = n->find_similar(Op_DivI);
3166       if (d) {
3167         // Replace them with a fused divmod if supported
3168         if (Matcher::has_match_rule(Op_DivModI)) {
3169           DivModINode* divmod = DivModINode::make(n);
3170           d->subsume_by(divmod->div_proj(), this);
3171           n->subsume_by(divmod->mod_proj(), this);
3172         } else {
3173           // replace a%b with a-((a/b)*b)
3174           Node* mult = new MulINode(d, d->in(2));
3175           Node* sub  = new SubINode(d->in(1), mult);
3176           n->subsume_by(sub, this);
3177         }
3178       }
3179     }
3180     break;
3181 
3182   case Op_ModL:
3183     if (UseDivMod) {
3184       // Check if a%b and a/b both exist
3185       Node* d = n->find_similar(Op_DivL);
3186       if (d) {
3187         // Replace them with a fused divmod if supported
3188         if (Matcher::has_match_rule(Op_DivModL)) {
3189           DivModLNode* divmod = DivModLNode::make(n);
3190           d->subsume_by(divmod->div_proj(), this);
3191           n->subsume_by(divmod->mod_proj(), this);
3192         } else {
3193           // replace a%b with a-((a/b)*b)
3194           Node* mult = new MulLNode(d, d->in(2));
3195           Node* sub  = new SubLNode(d->in(1), mult);
3196           n->subsume_by(sub, this);
3197         }
3198       }
3199     }
3200     break;
3201 
3202   case Op_LoadVector:
3203   case Op_StoreVector:
3204     break;
3205 
3206   case Op_AddReductionVI:
3207   case Op_AddReductionVL:
3208   case Op_AddReductionVF:
3209   case Op_AddReductionVD:
3210   case Op_MulReductionVI:
3211   case Op_MulReductionVL:
3212   case Op_MulReductionVF:
3213   case Op_MulReductionVD:
3214     break;
3215 
3216   case Op_PackB:
3217   case Op_PackS:
3218   case Op_PackI:
3219   case Op_PackF:
3220   case Op_PackL:
3221   case Op_PackD:
3222     if (n->req()-1 > 2) {
3223       // Replace many operand PackNodes with a binary tree for matching
3224       PackNode* p = (PackNode*) n;
3225       Node* btp = p->binary_tree_pack(1, n->req());
3226       n->subsume_by(btp, this);
3227     }
3228     break;
3229   case Op_Loop:
3230   case Op_CountedLoop:
3231     if (n->as_Loop()->is_inner_loop()) {
3232       frc.inc_inner_loop_count();
3233     }
3234     break;
3235   case Op_LShiftI:
3236   case Op_RShiftI:
3237   case Op_URShiftI:
3238   case Op_LShiftL:
3239   case Op_RShiftL:
3240   case Op_URShiftL:
3241     if (Matcher::need_masked_shift_count) {
3242       // The cpu's shift instructions don't restrict the count to the
3243       // lower 5/6 bits. We need to do the masking ourselves.
3244       Node* in2 = n->in(2);
3245       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3246       const TypeInt* t = in2->find_int_type();
3247       if (t != NULL && t->is_con()) {
3248         juint shift = t->get_con();
3249         if (shift > mask) { // Unsigned cmp
3250           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3251         }
3252       } else {
3253         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3254           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3255           n->set_req(2, shift);
3256         }
3257       }
3258       if (in2->outcnt() == 0) { // Remove dead node
3259         in2->disconnect_inputs(NULL, this);
3260       }
3261     }
3262     break;
3263   case Op_MemBarStoreStore:
3264   case Op_MemBarRelease:
3265     // Break the link with AllocateNode: it is no longer useful and
3266     // confuses register allocation.
3267     if (n->req() > MemBarNode::Precedent) {
3268       n->set_req(MemBarNode::Precedent, top());
3269     }
3270     break;
3271   case Op_RangeCheck: {
3272     RangeCheckNode* rc = n->as_RangeCheck();
3273     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3274     n->subsume_by(iff, this);
3275     frc._tests.push(iff);
3276     break;
3277   }
3278   case Op_ConvI2L: {
3279     if (!Matcher::convi2l_type_required) {
3280       // Code generation on some platforms doesn't need accurate
3281       // ConvI2L types. Widening the type can help remove redundant
3282       // address computations.
3283       n->as_Type()->set_type(TypeLong::INT);
3284       ResourceMark rm;
3285       Node_List wq;
3286       wq.push(n);
3287       for (uint next = 0; next < wq.size(); next++) {
3288         Node *m = wq.at(next);
3289 
3290         for(;;) {
3291           // Loop over all nodes with identical inputs edges as m
3292           Node* k = m->find_similar(m->Opcode());
3293           if (k == NULL) {
3294             break;
3295           }
3296           // Push their uses so we get a chance to remove node made
3297           // redundant
3298           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3299             Node* u = k->fast_out(i);
3300             assert(!wq.contains(u), "shouldn't process one node several times");
3301             if (u->Opcode() == Op_LShiftL ||
3302                 u->Opcode() == Op_AddL ||
3303                 u->Opcode() == Op_SubL ||
3304                 u->Opcode() == Op_AddP) {
3305               wq.push(u);
3306             }
3307           }
3308           // Replace all nodes with identical edges as m with m
3309           k->subsume_by(m, this);
3310         }
3311       }
3312     }
3313     break;
3314   }
3315   default:
3316     assert( !n->is_Call(), "" );
3317     assert( !n->is_Mem(), "" );
3318     assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3319     break;
3320   }
3321 
3322   // Collect CFG split points
3323   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3324     frc._tests.push(n);
3325   }
3326 }
3327 
3328 //------------------------------final_graph_reshaping_walk---------------------
3329 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3330 // requires that the walk visits a node's inputs before visiting the node.
3331 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3332   ResourceArea *area = Thread::current()->resource_area();
3333   Unique_Node_List sfpt(area);
3334 
3335   frc._visited.set(root->_idx); // first, mark node as visited
3336   uint cnt = root->req();
3337   Node *n = root;
3338   uint  i = 0;


3696       } else {
3697         visited.push(x);
3698       }
3699 
3700       if (x->is_Region()) {
3701         for (uint i = 1; i < x->req(); i++) {
3702           worklist.push(x->in(i));
3703         }
3704       } else {
3705         worklist.push(x->in(0));
3706         // We are looking for the pattern:
3707         //                            /->ThreadLocal
3708         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3709         //              \->ConI(0)
3710         // We want to verify that the If and the LoadB have the same control
3711         // See GraphKit::g1_write_barrier_pre()
3712         if (x->is_If()) {
3713           IfNode *iff = x->as_If();
3714           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3715             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3716             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3717                 && cmp->in(1)->is_Load()) {
3718               LoadNode* load = cmp->in(1)->as_Load();
3719               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3720                   && load->in(2)->in(3)->is_Con()
3721                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3722 
3723                 Node* if_ctrl = iff->in(0);
3724                 Node* load_ctrl = load->in(0);
3725 
3726                 if (if_ctrl != load_ctrl) {
3727                   // Skip possible CProj->NeverBranch in infinite loops
3728                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3729                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3730                     if_ctrl = if_ctrl->in(0)->in(0);
3731                   }
3732                 }
3733                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3734               }
3735             }
3736           }
3737         }
3738       }
3739     }
3740   }
3741 }
3742 
3743 #endif
3744 
3745 // The Compile object keeps track of failure reasons separately from the ciEnv.
3746 // This is required because there is not quite a 1-1 relation between the
3747 // ciEnv and its compilation task and the Compile object.  Note that one
3748 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3749 // to backtrack and retry without subsuming loads.  Other than this backtracking


4275   if (C->log() != NULL) {
4276     C->log()->inline_fail(msg);
4277   }
4278 }
4279 
4280 
4281 // Dump inlining replay data to the stream.
4282 // Don't change thread state and acquire any locks.
4283 void Compile::dump_inline_data(outputStream* out) {
4284   InlineTree* inl_tree = ilt();
4285   if (inl_tree != NULL) {
4286     out->print(" inline %d", inl_tree->count());
4287     inl_tree->dump_replay_data(out);
4288   }
4289 }
4290 
4291 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4292   if (n1->Opcode() < n2->Opcode())      return -1;
4293   else if (n1->Opcode() > n2->Opcode()) return 1;
4294 
4295   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4296   for (uint i = 1; i < n1->req(); i++) {
4297     if (n1->in(i) < n2->in(i))      return -1;
4298     else if (n1->in(i) > n2->in(i)) return 1;
4299   }
4300 
4301   return 0;
4302 }
4303 
4304 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4305   Node* n1 = *n1p;
4306   Node* n2 = *n2p;
4307 
4308   return cmp_expensive_nodes(n1, n2);
4309 }
4310 
4311 void Compile::sort_expensive_nodes() {
4312   if (!expensive_nodes_sorted()) {
4313     _expensive_nodes->sort(cmp_expensive_nodes);
4314   }
4315 }




1906 //----------------------------Finish_Warm--------------------------------------
1907 void Compile::Finish_Warm() {
1908   if (!InlineWarmCalls)  return;
1909   if (failing())  return;
1910   if (warm_calls() == NULL)  return;
1911 
1912   // Clean up loose ends, if we are out of space for inlining.
1913   WarmCallInfo* call;
1914   while ((call = pop_warm_call()) != NULL) {
1915     call->make_cold();
1916   }
1917 }
1918 
1919 //---------------------cleanup_loop_predicates-----------------------
1920 // Remove the opaque nodes that protect the predicates so that all unused
1921 // checks and uncommon_traps will be eliminated from the ideal graph
1922 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1923   if (predicate_count()==0) return;
1924   for (int i = predicate_count(); i > 0; i--) {
1925     Node * n = predicate_opaque1_node(i-1);
1926     assert(n->Opcode() == Opcodes::Op_Opaque1, "must be");
1927     igvn.replace_node(n, n->in(1));
1928   }
1929   assert(predicate_count()==0, "should be clean!");
1930 }
1931 
1932 void Compile::add_range_check_cast(Node* n) {
1933   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1934   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1935   _range_check_casts->append(n);
1936 }
1937 
1938 // Remove all range check dependent CastIINodes.
1939 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
1940   for (int i = range_check_cast_count(); i > 0; i--) {
1941     Node* cast = range_check_cast_node(i-1);
1942     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1943     igvn.replace_node(cast, cast->in(1));
1944   }
1945   assert(range_check_cast_count() == 0, "should be empty");
1946 }


2589 
2590   int  get_call_count  () const { return _call_count  ; }
2591   int  get_float_count () const { return _float_count ; }
2592   int  get_double_count() const { return _double_count; }
2593   int  get_java_call_count() const { return _java_call_count; }
2594   int  get_inner_loop_count() const { return _inner_loop_count; }
2595 };
2596 
2597 #ifdef ASSERT
2598 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2599   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2600   // Make sure the offset goes inside the instance layout.
2601   return k->contains_field_offset(tp->offset());
2602   // Note that OffsetBot and OffsetTop are very negative.
2603 }
2604 #endif
2605 
2606 // Eliminate trivially redundant StoreCMs and accumulate their
2607 // precedence edges.
2608 void Compile::eliminate_redundant_card_marks(Node* n) {
2609   assert(n->Opcode() == Opcodes::Op_StoreCM, "expected StoreCM");
2610   if (n->in(MemNode::Address)->outcnt() > 1) {
2611     // There are multiple users of the same address so it might be
2612     // possible to eliminate some of the StoreCMs
2613     Node* mem = n->in(MemNode::Memory);
2614     Node* adr = n->in(MemNode::Address);
2615     Node* val = n->in(MemNode::ValueIn);
2616     Node* prev = n;
2617     bool done = false;
2618     // Walk the chain of StoreCMs eliminating ones that match.  As
2619     // long as it's a chain of single users then the optimization is
2620     // safe.  Eliminating partially redundant StoreCMs would require
2621     // cloning copies down the other paths.
2622     while (mem->Opcode() == Opcodes::Op_StoreCM && mem->outcnt() == 1 && !done) {
2623       if (adr == mem->in(MemNode::Address) &&
2624           val == mem->in(MemNode::ValueIn)) {
2625         // redundant StoreCM
2626         if (mem->req() > MemNode::OopStore) {
2627           // Hasn't been processed by this code yet.
2628           n->add_prec(mem->in(MemNode::OopStore));
2629         } else {
2630           // Already converted to precedence edge
2631           for (uint i = mem->req(); i < mem->len(); i++) {
2632             // Accumulate any precedence edges
2633             if (mem->in(i) != NULL) {
2634               n->add_prec(mem->in(i));
2635             }
2636           }
2637           // Everything above this point has been processed.
2638           done = true;
2639         }
2640         // Eliminate the previous StoreCM
2641         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2642         assert(mem->outcnt() == 0, "should be dead");
2643         mem->disconnect_inputs(NULL, this);
2644       } else {
2645         prev = mem;
2646       }
2647       mem = prev->in(MemNode::Memory);
2648     }
2649   }
2650 }
2651 
2652 //------------------------------final_graph_reshaping_impl----------------------
2653 // Implement items 1-5 from final_graph_reshaping below.
2654 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2655 
2656   if ( n->outcnt() == 0 ) return; // dead node
2657   Opcodes nop = n->Opcode();
2658 
2659   // Check for 2-input instruction with "last use" on right input.
2660   // Swap to left input.  Implements item (2).
2661   if( n->req() == 3 &&          // two-input instruction
2662       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2663       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2664       n->in(2)->outcnt() == 1 &&// right use IS a last use
2665       !n->in(2)->is_Con() ) {   // right use is not a constant
2666     // Check for commutative opcode
2667     switch( nop ) {
2668     case Opcodes::Op_AddI:  case Opcodes::Op_AddF:  case Opcodes::Op_AddD:  case Opcodes::Op_AddL:
2669     case Opcodes::Op_MaxI:  case Opcodes::Op_MinI:
2670     case Opcodes::Op_MulI:  case Opcodes::Op_MulF:  case Opcodes::Op_MulD:  case Opcodes::Op_MulL:
2671     case Opcodes::Op_AndL:  case Opcodes::Op_XorL:  case Opcodes::Op_OrL:
2672     case Opcodes::Op_AndI:  case Opcodes::Op_XorI:  case Opcodes::Op_OrI: {
2673       // Move "last use" input to left by swapping inputs
2674       n->swap_edges(1, 2);
2675       break;
2676     }
2677     default:
2678       break;
2679     }
2680   }
2681 
2682 #ifdef ASSERT
2683   if( n->is_Mem() ) {
2684     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2685     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2686             // oop will be recorded in oop map if load crosses safepoint
2687             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2688                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2689             "raw memory operations should have control edge");
2690   }
2691 #endif
2692   // Count FPU ops and common calls, implements item (3)
2693   switch( nop ) {
2694   // Count all float operations that may use FPU
2695   case Opcodes::Op_AddF:
2696   case Opcodes::Op_SubF:
2697   case Opcodes::Op_MulF:
2698   case Opcodes::Op_DivF:
2699   case Opcodes::Op_NegF:
2700   case Opcodes::Op_ModF:
2701   case Opcodes::Op_ConvI2F:
2702   case Opcodes::Op_ConF:
2703   case Opcodes::Op_CmpF:
2704   case Opcodes::Op_CmpF3:
2705   // case Op_ConvL2F: // longs are split into 32-bit halves
2706     frc.inc_float_count();
2707     break;
2708 
2709   case Opcodes::Op_ConvF2D:
2710   case Opcodes::Op_ConvD2F:
2711     frc.inc_float_count();
2712     frc.inc_double_count();
2713     break;
2714 
2715   // Count all double operations that may use FPU
2716   case Opcodes::Op_AddD:
2717   case Opcodes::Op_SubD:
2718   case Opcodes::Op_MulD:
2719   case Opcodes::Op_DivD:
2720   case Opcodes::Op_NegD:
2721   case Opcodes::Op_ModD:
2722   case Opcodes::Op_ConvI2D:
2723   case Opcodes::Op_ConvD2I:
2724   // case Op_ConvL2D: // handled by leaf call
2725   // case Op_ConvD2L: // handled by leaf call
2726   case Opcodes::Op_ConD:
2727   case Opcodes::Op_CmpD:
2728   case Opcodes::Op_CmpD3:
2729     frc.inc_double_count();
2730     break;
2731   case Opcodes::Op_Opaque1:              // Remove Opaque Nodes before matching
2732   case Opcodes::Op_Opaque2:              // Remove Opaque Nodes before matching
2733   case Opcodes::Op_Opaque3:
2734     n->subsume_by(n->in(1), this);
2735     break;
2736   case Opcodes::Op_CallStaticJava:
2737   case Opcodes::Op_CallJava:
2738   case Opcodes::Op_CallDynamicJava:
2739     frc.inc_java_call_count(); // Count java call site;
2740   case Opcodes::Op_CallRuntime:
2741   case Opcodes::Op_CallLeaf:
2742   case Opcodes::Op_CallLeafNoFP: {
2743     assert( n->is_Call(), "" );
2744     CallNode *call = n->as_Call();
2745     // Count call sites where the FP mode bit would have to be flipped.
2746     // Do not count uncommon runtime calls:
2747     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2748     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2749     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2750       frc.inc_call_count();   // Count the call site
2751     } else {                  // See if uncommon argument is shared
2752       Node *n = call->in(TypeFunc::Parms);
2753       Opcodes nop = n->Opcode();
2754       // Clone shared simple arguments to uncommon calls, item (1).
2755       if( n->outcnt() > 1 &&
2756           !n->is_Proj() &&
2757           nop != Opcodes::Op_CreateEx &&
2758           nop != Opcodes::Op_CheckCastPP &&
2759           nop != Opcodes::Op_DecodeN &&
2760           nop != Opcodes::Op_DecodeNKlass &&
2761           !n->is_Mem() ) {
2762         Node *x = n->clone();
2763         call->set_req( TypeFunc::Parms, x );
2764       }
2765     }
2766     break;
2767   }
2768 
2769   case Opcodes::Op_StoreD:
2770   case Opcodes::Op_LoadD:
2771   case Opcodes::Op_LoadD_unaligned:
2772     frc.inc_double_count();
2773     goto handle_mem;
2774   case Opcodes::Op_StoreF:
2775   case Opcodes::Op_LoadF:
2776     frc.inc_float_count();
2777     goto handle_mem;
2778 
2779   case Opcodes::Op_StoreCM:
2780     {
2781       // Convert OopStore dependence into precedence edge
2782       Node* prec = n->in(MemNode::OopStore);
2783       n->del_req(MemNode::OopStore);
2784       n->add_prec(prec);
2785       eliminate_redundant_card_marks(n);
2786     }
2787 
2788     // fall through
2789 
2790   case Opcodes::Op_StoreB:
2791   case Opcodes::Op_StoreC:
2792   case Opcodes::Op_StorePConditional:
2793   case Opcodes::Op_StoreI:
2794   case Opcodes::Op_StoreL:
2795   case Opcodes::Op_StoreIConditional:
2796   case Opcodes::Op_StoreLConditional:
2797   case Opcodes::Op_CompareAndSwapB:
2798   case Opcodes::Op_CompareAndSwapS:
2799   case Opcodes::Op_CompareAndSwapI:
2800   case Opcodes::Op_CompareAndSwapL:
2801   case Opcodes::Op_CompareAndSwapP:
2802   case Opcodes::Op_CompareAndSwapN:
2803   case Opcodes::Op_WeakCompareAndSwapB:
2804   case Opcodes::Op_WeakCompareAndSwapS:
2805   case Opcodes::Op_WeakCompareAndSwapI:
2806   case Opcodes::Op_WeakCompareAndSwapL:
2807   case Opcodes::Op_WeakCompareAndSwapP:
2808   case Opcodes::Op_WeakCompareAndSwapN:
2809   case Opcodes::Op_CompareAndExchangeB:
2810   case Opcodes::Op_CompareAndExchangeS:
2811   case Opcodes::Op_CompareAndExchangeI:
2812   case Opcodes::Op_CompareAndExchangeL:
2813   case Opcodes::Op_CompareAndExchangeP:
2814   case Opcodes::Op_CompareAndExchangeN:
2815   case Opcodes::Op_GetAndAddS:
2816   case Opcodes::Op_GetAndAddB:
2817   case Opcodes::Op_GetAndAddI:
2818   case Opcodes::Op_GetAndAddL:
2819   case Opcodes::Op_GetAndSetS:
2820   case Opcodes::Op_GetAndSetB:
2821   case Opcodes::Op_GetAndSetI:
2822   case Opcodes::Op_GetAndSetL:
2823   case Opcodes::Op_GetAndSetP:
2824   case Opcodes::Op_GetAndSetN:
2825   case Opcodes::Op_StoreP:
2826   case Opcodes::Op_StoreN:
2827   case Opcodes::Op_StoreNKlass:
2828   case Opcodes::Op_LoadB:
2829   case Opcodes::Op_LoadUB:
2830   case Opcodes::Op_LoadUS:
2831   case Opcodes::Op_LoadI:
2832   case Opcodes::Op_LoadKlass:
2833   case Opcodes::Op_LoadNKlass:
2834   case Opcodes::Op_LoadL:
2835   case Opcodes::Op_LoadL_unaligned:
2836   case Opcodes::Op_LoadPLocked:
2837   case Opcodes::Op_LoadP:
2838   case Opcodes::Op_LoadN:
2839   case Opcodes::Op_LoadRange:
2840   case Opcodes::Op_LoadS: {
2841   handle_mem:
2842 #ifdef ASSERT
2843     if( VerifyOptoOopOffsets ) {
2844       assert( n->is_Mem(), "" );
2845       MemNode *mem  = (MemNode*)n;
2846       // Check to see if address types have grounded out somehow.
2847       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2848       assert( !tp || oop_offset_is_sane(tp), "" );
2849     }
2850 #endif
2851     break;
2852   }
2853 
2854   case Opcodes::Op_AddP: {               // Assert sane base pointers
2855     Node *addp = n->in(AddPNode::Address);
2856     assert( !addp->is_AddP() ||
2857             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2858             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2859             "Base pointers must match (addp %u)", addp->_idx );
2860 #ifdef _LP64
2861     if ((UseCompressedOops || UseCompressedClassPointers) &&
2862         addp->Opcode() == Opcodes::Op_ConP &&
2863         addp == n->in(AddPNode::Base) &&
2864         n->in(AddPNode::Offset)->is_Con()) {
2865       // Use addressing with narrow klass to load with offset on x86.
2866       // On sparc loading 32-bits constant and decoding it have less
2867       // instructions (4) then load 64-bits constant (7).
2868       // Do this transformation here since IGVN will convert ConN back to ConP.
2869       const Type* t = addp->bottom_type();
2870       if (t->isa_oopptr() || t->isa_klassptr()) {
2871         Node* nn = NULL;
2872 
2873         Opcodes op = t->isa_oopptr() ? Opcodes::Op_ConN : Opcodes::Op_ConNKlass;
2874 
2875         // Look for existing ConN node of the same exact type.
2876         Node* r  = root();
2877         uint cnt = r->outcnt();
2878         for (uint i = 0; i < cnt; i++) {
2879           Node* m = r->raw_out(i);
2880           if (m!= NULL && m->Opcode() == op &&
2881               m->bottom_type()->make_ptr() == t) {
2882             nn = m;
2883             break;
2884           }
2885         }
2886         if (nn != NULL) {
2887           // Decode a narrow oop to match address
2888           // [R12 + narrow_oop_reg<<3 + offset]
2889           if (t->isa_oopptr()) {
2890             nn = new DecodeNNode(nn, t);
2891           } else {
2892             nn = new DecodeNKlassNode(nn, t);
2893           }


2903                 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
2904                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
2905               }
2906 #endif
2907             }
2908           }
2909           n->set_req(AddPNode::Base, nn);
2910           n->set_req(AddPNode::Address, nn);
2911           if (addp->outcnt() == 0) {
2912             addp->disconnect_inputs(NULL, this);
2913           }
2914         }
2915       }
2916     }
2917 #endif
2918     // platform dependent reshaping of the address expression
2919     reshape_address(n->as_AddP());
2920     break;
2921   }
2922 
2923   case Opcodes::Op_CastPP: {
2924     // Remove CastPP nodes to gain more freedom during scheduling but
2925     // keep the dependency they encode as control or precedence edges
2926     // (if control is set already) on memory operations. Some CastPP
2927     // nodes don't have a control (don't carry a dependency): skip
2928     // those.
2929     if (n->in(0) != NULL) {
2930       ResourceMark rm;
2931       Unique_Node_List wq;
2932       wq.push(n);
2933       for (uint next = 0; next < wq.size(); ++next) {
2934         Node *m = wq.at(next);
2935         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
2936           Node* use = m->fast_out(i);
2937           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
2938             use->ensure_control_or_add_prec(n->in(0));
2939           } else {
2940             switch(use->Opcode()) {
2941             case Opcodes::Op_AddP:
2942             case Opcodes::Op_DecodeN:
2943             case Opcodes::Op_DecodeNKlass:
2944             case Opcodes::Op_CheckCastPP:
2945             case Opcodes::Op_CastPP:
2946               wq.push(use);
2947               break;
2948             }
2949           }
2950         }
2951       }
2952     }
2953     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
2954     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2955       Node* in1 = n->in(1);
2956       const Type* t = n->bottom_type();
2957       Node* new_in1 = in1->clone();
2958       new_in1->as_DecodeN()->set_type(t);
2959 
2960       if (!Matcher::narrow_oop_use_complex_address()) {
2961         //
2962         // x86, ARM and friends can handle 2 adds in addressing mode
2963         // and Matcher can fold a DecodeN node into address by using
2964         // a narrow oop directly and do implicit NULL check in address:
2965         //


2976         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2977         // to keep the information to which NULL check the new DecodeN node
2978         // corresponds to use it as value in implicit_null_check().
2979         //
2980         new_in1->set_req(0, n->in(0));
2981       }
2982 
2983       n->subsume_by(new_in1, this);
2984       if (in1->outcnt() == 0) {
2985         in1->disconnect_inputs(NULL, this);
2986       }
2987     } else {
2988       n->subsume_by(n->in(1), this);
2989       if (n->outcnt() == 0) {
2990         n->disconnect_inputs(NULL, this);
2991       }
2992     }
2993     break;
2994   }
2995 #ifdef _LP64
2996   case Opcodes::Op_CmpP:
2997     // Do this transformation here to preserve CmpPNode::sub() and
2998     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2999     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3000       Node* in1 = n->in(1);
3001       Node* in2 = n->in(2);
3002       if (!in1->is_DecodeNarrowPtr()) {
3003         in2 = in1;
3004         in1 = n->in(2);
3005       }
3006       assert(in1->is_DecodeNarrowPtr(), "sanity");
3007 
3008       Node* new_in2 = NULL;
3009       if (in2->is_DecodeNarrowPtr()) {
3010         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3011         new_in2 = in2->in(1);
3012       } else if (in2->Opcode() == Opcodes::Op_ConP) {
3013         const Type* t = in2->bottom_type();
3014         if (t == TypePtr::NULL_PTR) {
3015           assert(in1->is_DecodeN(), "compare klass to null?");
3016           // Don't convert CmpP null check into CmpN if compressed
3017           // oops implicit null check is not generated.
3018           // This will allow to generate normal oop implicit null check.
3019           if (Matcher::gen_narrow_oop_implicit_null_checks())
3020             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3021           //
3022           // This transformation together with CastPP transformation above
3023           // will generated code for implicit NULL checks for compressed oops.
3024           //
3025           // The original code after Optimize()
3026           //
3027           //    LoadN memory, narrow_oop_reg
3028           //    decode narrow_oop_reg, base_reg
3029           //    CmpP base_reg, NULL
3030           //    CastPP base_reg // NotNull
3031           //    Load [base_reg + offset], val_reg
3032           //


3057           //
3058         } else if (t->isa_oopptr()) {
3059           new_in2 = ConNode::make(t->make_narrowoop());
3060         } else if (t->isa_klassptr()) {
3061           new_in2 = ConNode::make(t->make_narrowklass());
3062         }
3063       }
3064       if (new_in2 != NULL) {
3065         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3066         n->subsume_by(cmpN, this);
3067         if (in1->outcnt() == 0) {
3068           in1->disconnect_inputs(NULL, this);
3069         }
3070         if (in2->outcnt() == 0) {
3071           in2->disconnect_inputs(NULL, this);
3072         }
3073       }
3074     }
3075     break;
3076 
3077   case Opcodes::Op_DecodeN:
3078   case Opcodes::Op_DecodeNKlass:
3079     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3080     // DecodeN could be pinned when it can't be fold into
3081     // an address expression, see the code for Op_CastPP above.
3082     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3083     break;
3084 
3085   case Opcodes::Op_EncodeP:
3086   case Opcodes::Op_EncodePKlass: {
3087     Node* in1 = n->in(1);
3088     if (in1->is_DecodeNarrowPtr()) {
3089       n->subsume_by(in1->in(1), this);
3090     } else if (in1->Opcode() == Opcodes::Op_ConP) {
3091       const Type* t = in1->bottom_type();
3092       if (t == TypePtr::NULL_PTR) {
3093         assert(t->isa_oopptr(), "null klass?");
3094         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3095       } else if (t->isa_oopptr()) {
3096         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3097       } else if (t->isa_klassptr()) {
3098         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3099       }
3100     }
3101     if (in1->outcnt() == 0) {
3102       in1->disconnect_inputs(NULL, this);
3103     }
3104     break;
3105   }
3106 
3107   case Opcodes::Op_Proj: {
3108     if (OptimizeStringConcat) {
3109       ProjNode* p = n->as_Proj();
3110       if (p->_is_io_use) {
3111         // Separate projections were used for the exception path which
3112         // are normally removed by a late inline.  If it wasn't inlined
3113         // then they will hang around and should just be replaced with
3114         // the original one.
3115         Node* proj = NULL;
3116         // Replace with just one
3117         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3118           Node *use = i.get();
3119           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3120             proj = use;
3121             break;
3122           }
3123         }
3124         assert(proj != NULL, "must be found");
3125         p->subsume_by(proj, this);
3126       }
3127     }
3128     break;
3129   }
3130 
3131   case Opcodes::Op_Phi:
3132     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3133       // The EncodeP optimization may create Phi with the same edges
3134       // for all paths. It is not handled well by Register Allocator.
3135       Node* unique_in = n->in(1);
3136       assert(unique_in != NULL, "");
3137       uint cnt = n->req();
3138       for (uint i = 2; i < cnt; i++) {
3139         Node* m = n->in(i);
3140         assert(m != NULL, "");
3141         if (unique_in != m)
3142           unique_in = NULL;
3143       }
3144       if (unique_in != NULL) {
3145         n->subsume_by(unique_in, this);
3146       }
3147     }
3148     break;
3149 
3150 #endif
3151 
3152 #ifdef ASSERT
3153   case Opcodes::Op_CastII:
3154     // Verify that all range check dependent CastII nodes were removed.
3155     if (n->isa_CastII()->has_range_check()) {
3156       n->dump(3);
3157       assert(false, "Range check dependent CastII node was not removed");
3158     }
3159     break;
3160 #endif
3161 
3162   case Opcodes::Op_ModI:
3163     if (UseDivMod) {
3164       // Check if a%b and a/b both exist
3165       Node* d = n->find_similar(Opcodes::Op_DivI);
3166       if (d) {
3167         // Replace them with a fused divmod if supported
3168         if (Matcher::has_match_rule(Opcodes::Op_DivModI)) {
3169           DivModINode* divmod = DivModINode::make(n);
3170           d->subsume_by(divmod->div_proj(), this);
3171           n->subsume_by(divmod->mod_proj(), this);
3172         } else {
3173           // replace a%b with a-((a/b)*b)
3174           Node* mult = new MulINode(d, d->in(2));
3175           Node* sub  = new SubINode(d->in(1), mult);
3176           n->subsume_by(sub, this);
3177         }
3178       }
3179     }
3180     break;
3181 
3182   case Opcodes::Op_ModL:
3183     if (UseDivMod) {
3184       // Check if a%b and a/b both exist
3185       Node* d = n->find_similar(Opcodes::Op_DivL);
3186       if (d) {
3187         // Replace them with a fused divmod if supported
3188         if (Matcher::has_match_rule(Opcodes::Op_DivModL)) {
3189           DivModLNode* divmod = DivModLNode::make(n);
3190           d->subsume_by(divmod->div_proj(), this);
3191           n->subsume_by(divmod->mod_proj(), this);
3192         } else {
3193           // replace a%b with a-((a/b)*b)
3194           Node* mult = new MulLNode(d, d->in(2));
3195           Node* sub  = new SubLNode(d->in(1), mult);
3196           n->subsume_by(sub, this);
3197         }
3198       }
3199     }
3200     break;
3201 
3202   case Opcodes::Op_LoadVector:
3203   case Opcodes::Op_StoreVector:
3204     break;
3205 
3206   case Opcodes::Op_AddReductionVI:
3207   case Opcodes::Op_AddReductionVL:
3208   case Opcodes::Op_AddReductionVF:
3209   case Opcodes::Op_AddReductionVD:
3210   case Opcodes::Op_MulReductionVI:
3211   case Opcodes::Op_MulReductionVL:
3212   case Opcodes::Op_MulReductionVF:
3213   case Opcodes::Op_MulReductionVD:
3214     break;
3215 
3216   case Opcodes::Op_PackB:
3217   case Opcodes::Op_PackS:
3218   case Opcodes::Op_PackI:
3219   case Opcodes::Op_PackF:
3220   case Opcodes::Op_PackL:
3221   case Opcodes::Op_PackD:
3222     if (n->req()-1 > 2) {
3223       // Replace many operand PackNodes with a binary tree for matching
3224       PackNode* p = (PackNode*) n;
3225       Node* btp = p->binary_tree_pack(1, n->req());
3226       n->subsume_by(btp, this);
3227     }
3228     break;
3229   case Opcodes::Op_Loop:
3230   case Opcodes::Op_CountedLoop:
3231     if (n->as_Loop()->is_inner_loop()) {
3232       frc.inc_inner_loop_count();
3233     }
3234     break;
3235   case Opcodes::Op_LShiftI:
3236   case Opcodes::Op_RShiftI:
3237   case Opcodes::Op_URShiftI:
3238   case Opcodes::Op_LShiftL:
3239   case Opcodes::Op_RShiftL:
3240   case Opcodes::Op_URShiftL:
3241     if (Matcher::need_masked_shift_count) {
3242       // The cpu's shift instructions don't restrict the count to the
3243       // lower 5/6 bits. We need to do the masking ourselves.
3244       Node* in2 = n->in(2);
3245       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3246       const TypeInt* t = in2->find_int_type();
3247       if (t != NULL && t->is_con()) {
3248         juint shift = t->get_con();
3249         if (shift > mask) { // Unsigned cmp
3250           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3251         }
3252       } else {
3253         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3254           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3255           n->set_req(2, shift);
3256         }
3257       }
3258       if (in2->outcnt() == 0) { // Remove dead node
3259         in2->disconnect_inputs(NULL, this);
3260       }
3261     }
3262     break;
3263   case Opcodes::Op_MemBarStoreStore:
3264   case Opcodes::Op_MemBarRelease:
3265     // Break the link with AllocateNode: it is no longer useful and
3266     // confuses register allocation.
3267     if (n->req() > MemBarNode::Precedent) {
3268       n->set_req(MemBarNode::Precedent, top());
3269     }
3270     break;
3271   case Opcodes::Op_RangeCheck: {
3272     RangeCheckNode* rc = n->as_RangeCheck();
3273     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3274     n->subsume_by(iff, this);
3275     frc._tests.push(iff);
3276     break;
3277   }
3278   case Opcodes::Op_ConvI2L: {
3279     if (!Matcher::convi2l_type_required) {
3280       // Code generation on some platforms doesn't need accurate
3281       // ConvI2L types. Widening the type can help remove redundant
3282       // address computations.
3283       n->as_Type()->set_type(TypeLong::INT);
3284       ResourceMark rm;
3285       Node_List wq;
3286       wq.push(n);
3287       for (uint next = 0; next < wq.size(); next++) {
3288         Node *m = wq.at(next);
3289 
3290         for(;;) {
3291           // Loop over all nodes with identical inputs edges as m
3292           Node* k = m->find_similar(m->Opcode());
3293           if (k == NULL) {
3294             break;
3295           }
3296           // Push their uses so we get a chance to remove node made
3297           // redundant
3298           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3299             Node* u = k->fast_out(i);
3300             assert(!wq.contains(u), "shouldn't process one node several times");
3301             if (u->Opcode() == Opcodes::Op_LShiftL ||
3302                 u->Opcode() == Opcodes::Op_AddL ||
3303                 u->Opcode() == Opcodes::Op_SubL ||
3304                 u->Opcode() == Opcodes::Op_AddP) {
3305               wq.push(u);
3306             }
3307           }
3308           // Replace all nodes with identical edges as m with m
3309           k->subsume_by(m, this);
3310         }
3311       }
3312     }
3313     break;
3314   }
3315   default:
3316     assert( !n->is_Call(), "" );
3317     assert( !n->is_Mem(), "" );
3318     assert( nop != Opcodes::Op_ProfileBoolean, "should be eliminated during IGVN");
3319     break;
3320   }
3321 
3322   // Collect CFG split points
3323   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3324     frc._tests.push(n);
3325   }
3326 }
3327 
3328 //------------------------------final_graph_reshaping_walk---------------------
3329 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3330 // requires that the walk visits a node's inputs before visiting the node.
3331 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3332   ResourceArea *area = Thread::current()->resource_area();
3333   Unique_Node_List sfpt(area);
3334 
3335   frc._visited.set(root->_idx); // first, mark node as visited
3336   uint cnt = root->req();
3337   Node *n = root;
3338   uint  i = 0;


3696       } else {
3697         visited.push(x);
3698       }
3699 
3700       if (x->is_Region()) {
3701         for (uint i = 1; i < x->req(); i++) {
3702           worklist.push(x->in(i));
3703         }
3704       } else {
3705         worklist.push(x->in(0));
3706         // We are looking for the pattern:
3707         //                            /->ThreadLocal
3708         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3709         //              \->ConI(0)
3710         // We want to verify that the If and the LoadB have the same control
3711         // See GraphKit::g1_write_barrier_pre()
3712         if (x->is_If()) {
3713           IfNode *iff = x->as_If();
3714           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3715             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3716             if (cmp->Opcode() == Opcodes::Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3717                 && cmp->in(1)->is_Load()) {
3718               LoadNode* load = cmp->in(1)->as_Load();
3719               if (load->Opcode() == Opcodes::Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Opcodes::Op_ThreadLocal
3720                   && load->in(2)->in(3)->is_Con()
3721                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3722 
3723                 Node* if_ctrl = iff->in(0);
3724                 Node* load_ctrl = load->in(0);
3725 
3726                 if (if_ctrl != load_ctrl) {
3727                   // Skip possible CProj->NeverBranch in infinite loops
3728                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Opcodes::Op_CProj)
3729                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Opcodes::Op_NeverBranch)) {
3730                     if_ctrl = if_ctrl->in(0)->in(0);
3731                   }
3732                 }
3733                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3734               }
3735             }
3736           }
3737         }
3738       }
3739     }
3740   }
3741 }
3742 
3743 #endif
3744 
3745 // The Compile object keeps track of failure reasons separately from the ciEnv.
3746 // This is required because there is not quite a 1-1 relation between the
3747 // ciEnv and its compilation task and the Compile object.  Note that one
3748 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3749 // to backtrack and retry without subsuming loads.  Other than this backtracking


4275   if (C->log() != NULL) {
4276     C->log()->inline_fail(msg);
4277   }
4278 }
4279 
4280 
4281 // Dump inlining replay data to the stream.
4282 // Don't change thread state and acquire any locks.
4283 void Compile::dump_inline_data(outputStream* out) {
4284   InlineTree* inl_tree = ilt();
4285   if (inl_tree != NULL) {
4286     out->print(" inline %d", inl_tree->count());
4287     inl_tree->dump_replay_data(out);
4288   }
4289 }
4290 
4291 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4292   if (n1->Opcode() < n2->Opcode())      return -1;
4293   else if (n1->Opcode() > n2->Opcode()) return 1;
4294 
4295   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[static_cast<uint>(n1->Opcode())], n1->req(), n2->req());
4296   for (uint i = 1; i < n1->req(); i++) {
4297     if (n1->in(i) < n2->in(i))      return -1;
4298     else if (n1->in(i) > n2->in(i)) return 1;
4299   }
4300 
4301   return 0;
4302 }
4303 
4304 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4305   Node* n1 = *n1p;
4306   Node* n2 = *n2p;
4307 
4308   return cmp_expensive_nodes(n1, n2);
4309 }
4310 
4311 void Compile::sort_expensive_nodes() {
4312   if (!expensive_nodes_sorted()) {
4313     _expensive_nodes->sort(cmp_expensive_nodes);
4314   }
4315 }


< prev index next >