< prev index next >

src/share/vm/opto/matcher.cpp

Print this page




  26 #include "memory/allocation.inline.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "opto/ad.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/idealGraphPrinter.hpp"
  32 #include "opto/matcher.hpp"
  33 #include "opto/memnode.hpp"
  34 #include "opto/movenode.hpp"
  35 #include "opto/opcodes.hpp"
  36 #include "opto/regmask.hpp"
  37 #include "opto/rootnode.hpp"
  38 #include "opto/runtime.hpp"
  39 #include "opto/type.hpp"
  40 #include "opto/vectornode.hpp"
  41 #include "runtime/os.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 
  44 OptoReg::Name OptoReg::c_frame_pointer;
  45 
  46 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
  47 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
  48 RegMask Matcher::STACK_ONLY_mask;
  49 RegMask Matcher::c_frame_ptr_mask;
  50 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
  51 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
  52 
  53 //---------------------------Matcher-------------------------------------------
  54 Matcher::Matcher()
  55 : PhaseTransform( Phase::Ins_Select ),
  56 #ifdef ASSERT
  57   _old2new_map(C->comp_arena()),
  58   _new2old_map(C->comp_arena()),
  59 #endif
  60   _shared_nodes(C->comp_arena()),
  61   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
  62   _swallowed(swallowed),
  63   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
  64   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
  65   _must_clone(must_clone),
  66   _register_save_policy(register_save_policy),
  67   _c_reg_save_policy(c_reg_save_policy),
  68   _register_save_type(register_save_type),
  69   _ruleName(ruleName),
  70   _allocation_started(false),
  71   _states_arena(Chunk::medium_size),
  72   _visited(&_states_arena),
  73   _shared(&_states_arena),
  74   _dontcare(&_states_arena) {
  75   C->set_matcher(this);
  76 
  77   idealreg2spillmask  [Op_RegI] = NULL;
  78   idealreg2spillmask  [Op_RegN] = NULL;
  79   idealreg2spillmask  [Op_RegL] = NULL;
  80   idealreg2spillmask  [Op_RegF] = NULL;
  81   idealreg2spillmask  [Op_RegD] = NULL;
  82   idealreg2spillmask  [Op_RegP] = NULL;
  83   idealreg2spillmask  [Op_VecS] = NULL;
  84   idealreg2spillmask  [Op_VecD] = NULL;
  85   idealreg2spillmask  [Op_VecX] = NULL;
  86   idealreg2spillmask  [Op_VecY] = NULL;
  87   idealreg2spillmask  [Op_VecZ] = NULL;
  88 
  89   idealreg2debugmask  [Op_RegI] = NULL;
  90   idealreg2debugmask  [Op_RegN] = NULL;
  91   idealreg2debugmask  [Op_RegL] = NULL;
  92   idealreg2debugmask  [Op_RegF] = NULL;
  93   idealreg2debugmask  [Op_RegD] = NULL;
  94   idealreg2debugmask  [Op_RegP] = NULL;
  95   idealreg2debugmask  [Op_VecS] = NULL;
  96   idealreg2debugmask  [Op_VecD] = NULL;
  97   idealreg2debugmask  [Op_VecX] = NULL;
  98   idealreg2debugmask  [Op_VecY] = NULL;
  99   idealreg2debugmask  [Op_VecZ] = NULL;
 100 
 101   idealreg2mhdebugmask[Op_RegI] = NULL;
 102   idealreg2mhdebugmask[Op_RegN] = NULL;
 103   idealreg2mhdebugmask[Op_RegL] = NULL;
 104   idealreg2mhdebugmask[Op_RegF] = NULL;
 105   idealreg2mhdebugmask[Op_RegD] = NULL;
 106   idealreg2mhdebugmask[Op_RegP] = NULL;
 107   idealreg2mhdebugmask[Op_VecS] = NULL;
 108   idealreg2mhdebugmask[Op_VecD] = NULL;
 109   idealreg2mhdebugmask[Op_VecX] = NULL;
 110   idealreg2mhdebugmask[Op_VecY] = NULL;
 111   idealreg2mhdebugmask[Op_VecZ] = NULL;
 112 
 113   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
 114 }
 115 
 116 //------------------------------warp_incoming_stk_arg------------------------
 117 // This warps a VMReg into an OptoReg::Name
 118 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
 119   OptoReg::Name warped;
 120   if( reg->is_stack() ) {  // Stack slot argument?
 121     warped = OptoReg::add(_old_SP, reg->reg2stack() );
 122     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
 123     if( warped >= _in_arg_limit )
 124       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
 125     if (!RegMask::can_represent_arg(warped)) {
 126       // the compiler cannot represent this method's calling sequence
 127       C->record_method_not_compilable("unsupported incoming calling sequence");
 128       return OptoReg::Bad;
 129     }
 130     return warped;
 131   }


 168 
 169 //---------------------------match---------------------------------------------
 170 void Matcher::match( ) {
 171   if( MaxLabelRootDepth < 100 ) { // Too small?
 172     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
 173     MaxLabelRootDepth = 100;
 174   }
 175   // One-time initialization of some register masks.
 176   init_spill_mask( C->root()->in(1) );
 177   _return_addr_mask = return_addr();
 178 #ifdef _LP64
 179   // Pointers take 2 slots in 64-bit land
 180   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
 181 #endif
 182 
 183   // Map a Java-signature return type into return register-value
 184   // machine registers for 0, 1 and 2 returned values.
 185   const TypeTuple *range = C->tf()->range();
 186   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
 187     // Get ideal-register return type
 188     int ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
 189     // Get machine return register
 190     uint sop = C->start()->Opcode();
 191     OptoRegPair regs = return_value(ireg, false);
 192 
 193     // And mask for same
 194     _return_value_mask = RegMask(regs.first());
 195     if( OptoReg::is_valid(regs.second()) )
 196       _return_value_mask.Insert(regs.second());
 197   }
 198 
 199   // ---------------
 200   // Frame Layout
 201 
 202   // Need the method signature to determine the incoming argument types,
 203   // because the types determine which registers the incoming arguments are
 204   // in, and this affects the matched code.
 205   const TypeTuple *domain = C->tf()->domain();
 206   uint             argcnt = domain->cnt() - TypeFunc::Parms;
 207   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
 208   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
 209   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
 210   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );


 402 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
 403   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
 404   // Do all the pre-defined register masks
 405   rms[TypeFunc::Control  ] = RegMask::Empty;
 406   rms[TypeFunc::I_O      ] = RegMask::Empty;
 407   rms[TypeFunc::Memory   ] = RegMask::Empty;
 408   rms[TypeFunc::ReturnAdr] = ret_adr;
 409   rms[TypeFunc::FramePtr ] = fp;
 410   return rms;
 411 }
 412 
 413 //---------------------------init_first_stack_mask-----------------------------
 414 // Create the initial stack mask used by values spilling to the stack.
 415 // Disallow any debug info in outgoing argument areas by setting the
 416 // initial mask accordingly.
 417 void Matcher::init_first_stack_mask() {
 418 
 419   // Allocate storage for spill masks as masks for the appropriate load type.
 420   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+5));
 421 
 422   idealreg2spillmask  [Op_RegN] = &rms[0];
 423   idealreg2spillmask  [Op_RegI] = &rms[1];
 424   idealreg2spillmask  [Op_RegL] = &rms[2];
 425   idealreg2spillmask  [Op_RegF] = &rms[3];
 426   idealreg2spillmask  [Op_RegD] = &rms[4];
 427   idealreg2spillmask  [Op_RegP] = &rms[5];
 428 
 429   idealreg2debugmask  [Op_RegN] = &rms[6];
 430   idealreg2debugmask  [Op_RegI] = &rms[7];
 431   idealreg2debugmask  [Op_RegL] = &rms[8];
 432   idealreg2debugmask  [Op_RegF] = &rms[9];
 433   idealreg2debugmask  [Op_RegD] = &rms[10];
 434   idealreg2debugmask  [Op_RegP] = &rms[11];
 435 
 436   idealreg2mhdebugmask[Op_RegN] = &rms[12];
 437   idealreg2mhdebugmask[Op_RegI] = &rms[13];
 438   idealreg2mhdebugmask[Op_RegL] = &rms[14];
 439   idealreg2mhdebugmask[Op_RegF] = &rms[15];
 440   idealreg2mhdebugmask[Op_RegD] = &rms[16];
 441   idealreg2mhdebugmask[Op_RegP] = &rms[17];
 442 
 443   idealreg2spillmask  [Op_VecS] = &rms[18];
 444   idealreg2spillmask  [Op_VecD] = &rms[19];
 445   idealreg2spillmask  [Op_VecX] = &rms[20];
 446   idealreg2spillmask  [Op_VecY] = &rms[21];
 447   idealreg2spillmask  [Op_VecZ] = &rms[22];
 448 
 449   OptoReg::Name i;
 450 
 451   // At first, start with the empty mask
 452   C->FIRST_STACK_mask().Clear();
 453 
 454   // Add in the incoming argument area
 455   OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 456   for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) {
 457     C->FIRST_STACK_mask().Insert(i);
 458   }
 459   // Add in all bits past the outgoing argument area
 460   guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
 461             "must be able to represent all call arguments in reg mask");
 462   OptoReg::Name init = _out_arg_limit;
 463   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) {
 464     C->FIRST_STACK_mask().Insert(i);
 465   }
 466   // Finally, set the "infinite stack" bit.
 467   C->FIRST_STACK_mask().set_AllStack();
 468 
 469   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
 470   RegMask aligned_stack_mask = C->FIRST_STACK_mask();
 471   // Keep spill masks aligned.
 472   aligned_stack_mask.clear_to_pairs();
 473   assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 474 
 475   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
 476 #ifdef _LP64
 477   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
 478    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
 479    idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
 480 #else
 481    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
 482 #endif
 483   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
 484    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
 485   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
 486    idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
 487   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
 488    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
 489   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
 490    idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
 491 
 492   if (Matcher::vector_size_supported(T_BYTE,4)) {
 493     *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
 494      idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
 495   }
 496   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 497     // For VecD we need dual alignment and 8 bytes (2 slots) for spills.
 498     // RA guarantees such alignment since it is needed for Double and Long values.
 499     *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
 500      idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
 501   }
 502   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 503     // For VecX we need quadro alignment and 16 bytes (4 slots) for spills.
 504     //
 505     // RA can use input arguments stack slots for spills but until RA
 506     // we don't know frame size and offset of input arg stack slots.
 507     //
 508     // Exclude last input arg stack slots to avoid spilling vectors there
 509     // otherwise vector spills could stomp over stack slots in caller frame.
 510     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 511     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) {
 512       aligned_stack_mask.Remove(in);
 513       in = OptoReg::add(in, -1);
 514     }
 515      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
 516      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 517     *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
 518      idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
 519   }
 520   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 521     // For VecY we need octo alignment and 32 bytes (8 slots) for spills.
 522     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 523     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) {
 524       aligned_stack_mask.Remove(in);
 525       in = OptoReg::add(in, -1);
 526     }
 527      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
 528      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 529     *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
 530      idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
 531   }
 532   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 533     // For VecZ we need enough alignment and 64 bytes (16 slots) for spills.
 534     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 535     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecZ); k++) {
 536       aligned_stack_mask.Remove(in);
 537       in = OptoReg::add(in, -1);
 538     }
 539      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecZ);
 540      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 541     *idealreg2spillmask[Op_VecZ] = *idealreg2regmask[Op_VecZ];
 542      idealreg2spillmask[Op_VecZ]->OR(aligned_stack_mask);
 543   }
 544    if (UseFPUForSpilling) {
 545      // This mask logic assumes that the spill operations are
 546      // symmetric and that the registers involved are the same size.
 547      // On sparc for instance we may have to use 64 bit moves will
 548      // kill 2 registers when used with F0-F31.
 549      idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
 550      idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
 551 #ifdef _LP64
 552      idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
 553      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 554      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 555      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
 556 #else
 557      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
 558 #ifdef ARM
 559      // ARM has support for moving 64bit values between a pair of
 560      // integer registers and a double register
 561      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 562      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 563 #endif
 564 #endif
 565    }
 566 
 567   // Make up debug masks.  Any spill slot plus callee-save registers.
 568   // Caller-save registers are assumed to be trashable by the various
 569   // inline-cache fixup routines.
 570   *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
 571   *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
 572   *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
 573   *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
 574   *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
 575   *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
 576 
 577   *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
 578   *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
 579   *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
 580   *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
 581   *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
 582   *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
 583 
 584   // Prevent stub compilations from attempting to reference
 585   // callee-saved registers from debug info
 586   bool exclude_soe = !Compile::current()->is_method_compilation();
 587 
 588   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 589     // registers the caller has to save do not work
 590     if( _register_save_policy[i] == 'C' ||
 591         _register_save_policy[i] == 'A' ||
 592         (_register_save_policy[i] == 'E' && exclude_soe) ) {
 593       idealreg2debugmask  [Op_RegN]->Remove(i);
 594       idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
 595       idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
 596       idealreg2debugmask  [Op_RegF]->Remove(i); // masks
 597       idealreg2debugmask  [Op_RegD]->Remove(i);
 598       idealreg2debugmask  [Op_RegP]->Remove(i);
 599 
 600       idealreg2mhdebugmask[Op_RegN]->Remove(i);
 601       idealreg2mhdebugmask[Op_RegI]->Remove(i);
 602       idealreg2mhdebugmask[Op_RegL]->Remove(i);
 603       idealreg2mhdebugmask[Op_RegF]->Remove(i);
 604       idealreg2mhdebugmask[Op_RegD]->Remove(i);
 605       idealreg2mhdebugmask[Op_RegP]->Remove(i);
 606     }
 607   }
 608 
 609   // Subtract the register we use to save the SP for MethodHandle
 610   // invokes to from the debug mask.
 611   const RegMask save_mask = method_handle_invoke_SP_save_mask();
 612   idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
 613   idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
 614   idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
 615   idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
 616   idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
 617   idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
 618 }
 619 
 620 //---------------------------is_save_on_entry----------------------------------
 621 bool Matcher::is_save_on_entry( int reg ) {
 622   return
 623     _register_save_policy[reg] == 'E' ||
 624     _register_save_policy[reg] == 'A' || // Save-on-entry register?
 625     // Also save argument registers in the trampolining stubs
 626     (C->save_argument_registers() && is_spillable_arg(reg));
 627 }
 628 
 629 //---------------------------Fixup_Save_On_Entry-------------------------------
 630 void Matcher::Fixup_Save_On_Entry( ) {
 631   init_first_stack_mask();
 632 
 633   Node *root = C->root();       // Short name for root
 634   // Count number of save-on-entry registers.
 635   uint soe_cnt = number_of_saved_registers();
 636   uint i;
 637 


 665 #ifdef _LP64
 666     // Need two slots for ptrs in 64-bit land
 667     reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(reg), 1));
 668 #endif
 669   }
 670 
 671   // Input RegMask array shared by all TailCalls
 672   uint tail_call_edge_cnt = TypeFunc::Parms+2;
 673   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 674 
 675   // Input RegMask array shared by all TailJumps
 676   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
 677   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 678 
 679   // TailCalls have 2 returned values (target & moop), whose masks come
 680   // from the usual MachNode/MachOper mechanism.  Find a sample
 681   // TailCall to extract these masks and put the correct masks into
 682   // the tail_call_rms array.
 683   for( i=1; i < root->req(); i++ ) {
 684     MachReturnNode *m = root->in(i)->as_MachReturn();
 685     if( m->ideal_Opcode() == Op_TailCall ) {
 686       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 687       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 688       break;
 689     }
 690   }
 691 
 692   // TailJumps have 2 returned values (target & ex_oop), whose masks come
 693   // from the usual MachNode/MachOper mechanism.  Find a sample
 694   // TailJump to extract these masks and put the correct masks into
 695   // the tail_jump_rms array.
 696   for( i=1; i < root->req(); i++ ) {
 697     MachReturnNode *m = root->in(i)->as_MachReturn();
 698     if( m->ideal_Opcode() == Op_TailJump ) {
 699       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 700       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 701       break;
 702     }
 703   }
 704 
 705   // Input RegMask array shared by all Halts
 706   uint halt_edge_cnt = TypeFunc::Parms;
 707   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 708 
 709   // Capture the return input masks into each exit flavor
 710   for( i=1; i < root->req(); i++ ) {
 711     MachReturnNode *exit = root->in(i)->as_MachReturn();
 712     switch( exit->ideal_Opcode() ) {
 713       case Op_Return   : exit->_in_rms = ret_rms;  break;
 714       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
 715       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
 716       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
 717       case Op_Halt     : exit->_in_rms = halt_rms; break;
 718       default          : ShouldNotReachHere();
 719     }
 720   }
 721 
 722   // Next unused projection number from Start.
 723   int proj_cnt = C->tf()->domain()->cnt();
 724 
 725   // Do all the save-on-entry registers.  Make projections from Start for
 726   // them, and give them a use at the exit points.  To the allocator, they
 727   // look like incoming register arguments.
 728   for( i = 0; i < _last_Mach_Reg; i++ ) {
 729     if( is_save_on_entry(i) ) {
 730 
 731       // Add the save-on-entry to the mask array
 732       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
 733       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
 734       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
 735       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
 736       // Halts need the SOE registers, but only in the stack as debug info.
 737       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
 738       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
 739 
 740       Node *mproj;
 741 
 742       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
 743       // into a single RegD.
 744       if( (i&1) == 0 &&
 745           _register_save_type[i  ] == Op_RegF &&
 746           _register_save_type[i+1] == Op_RegF &&
 747           is_save_on_entry(i+1) ) {
 748         // Add other bit for double
 749         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 750         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 751         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 752         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 753         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 754         mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
 755         proj_cnt += 2;          // Skip 2 for doubles
 756       }
 757       else if( (i&1) == 1 &&    // Else check for high half of double
 758                _register_save_type[i-1] == Op_RegF &&
 759                _register_save_type[i  ] == Op_RegF &&
 760                is_save_on_entry(i-1) ) {
 761         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 762         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 763         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 764         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 765         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 766         mproj = C->top();
 767       }
 768       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
 769       // into a single RegL.
 770       else if( (i&1) == 0 &&
 771           _register_save_type[i  ] == Op_RegI &&
 772           _register_save_type[i+1] == Op_RegI &&
 773         is_save_on_entry(i+1) ) {
 774         // Add other bit for long
 775         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 776         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 777         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 778         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 779         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 780         mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
 781         proj_cnt += 2;          // Skip 2 for longs
 782       }
 783       else if( (i&1) == 1 &&    // Else check for high half of long
 784                _register_save_type[i-1] == Op_RegI &&
 785                _register_save_type[i  ] == Op_RegI &&
 786                is_save_on_entry(i-1) ) {
 787         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 788         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 789         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 790         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 791         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 792         mproj = C->top();
 793       } else {
 794         // Make a projection for it off the Start
 795         mproj = new MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
 796       }
 797 
 798       ret_edge_cnt ++;
 799       reth_edge_cnt ++;
 800       tail_call_edge_cnt ++;
 801       tail_jump_edge_cnt ++;
 802       halt_edge_cnt ++;
 803 
 804       // Add a use of the SOE register to all exit paths
 805       for( uint j=1; j < root->req(); j++ )
 806         root->in(j)->add_req(mproj);
 807     } // End of if a save-on-entry register
 808   } // End of for all machine registers
 809 }
 810 
 811 //------------------------------init_spill_mask--------------------------------
 812 void Matcher::init_spill_mask( Node *ret ) {
 813   if( idealreg2regmask[Op_RegI] ) return; // One time only init
 814 
 815   OptoReg::c_frame_pointer = c_frame_pointer();
 816   c_frame_ptr_mask = c_frame_pointer();
 817 #ifdef _LP64
 818   // pointers are twice as big
 819   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
 820 #endif
 821 
 822   // Start at OptoReg::stack0()
 823   STACK_ONLY_mask.Clear();
 824   OptoReg::Name init = OptoReg::stack2reg(0);
 825   // STACK_ONLY_mask is all stack bits
 826   OptoReg::Name i;
 827   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 828     STACK_ONLY_mask.Insert(i);
 829   // Also set the "infinite stack" bit.
 830   STACK_ONLY_mask.set_AllStack();
 831 
 832   // Copy the register names over into the shared world
 833   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {


 839   // Grab the Frame Pointer
 840   Node *fp  = ret->in(TypeFunc::FramePtr);
 841   Node *mem = ret->in(TypeFunc::Memory);
 842   const TypePtr* atp = TypePtr::BOTTOM;
 843   // Share frame pointer while making spill ops
 844   set_shared(fp);
 845 
 846   // Compute generic short-offset Loads
 847 #ifdef _LP64
 848   MachNode *spillCP = match_tree(new LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
 849 #endif
 850   MachNode *spillI  = match_tree(new LoadINode(NULL,mem,fp,atp,TypeInt::INT,MemNode::unordered));
 851   MachNode *spillL  = match_tree(new LoadLNode(NULL,mem,fp,atp,TypeLong::LONG,MemNode::unordered, LoadNode::DependsOnlyOnTest, false));
 852   MachNode *spillF  = match_tree(new LoadFNode(NULL,mem,fp,atp,Type::FLOAT,MemNode::unordered));
 853   MachNode *spillD  = match_tree(new LoadDNode(NULL,mem,fp,atp,Type::DOUBLE,MemNode::unordered));
 854   MachNode *spillP  = match_tree(new LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
 855   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
 856          spillD != NULL && spillP != NULL, "");
 857   // Get the ADLC notion of the right regmask, for each basic type.
 858 #ifdef _LP64
 859   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
 860 #endif
 861   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
 862   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
 863   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
 864   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
 865   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
 866 
 867   // Vector regmasks.
 868   if (Matcher::vector_size_supported(T_BYTE,4)) {
 869     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
 870     MachNode *spillVectS = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS));
 871     idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask();
 872   }
 873   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 874     MachNode *spillVectD = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD));
 875     idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask();
 876   }
 877   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 878     MachNode *spillVectX = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX));
 879     idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask();
 880   }
 881   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 882     MachNode *spillVectY = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY));
 883     idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask();
 884   }
 885   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 886     MachNode *spillVectZ = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTZ));
 887     idealreg2regmask[Op_VecZ] = &spillVectZ->out_RegMask();
 888   }
 889 }
 890 
 891 #ifdef ASSERT
 892 static void match_alias_type(Compile* C, Node* n, Node* m) {
 893   if (!VerifyAliases)  return;  // do not go looking for trouble by default
 894   const TypePtr* nat = n->adr_type();
 895   const TypePtr* mat = m->adr_type();
 896   int nidx = C->get_alias_index(nat);
 897   int midx = C->get_alias_index(mat);
 898   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
 899   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
 900     for (uint i = 1; i < n->req(); i++) {
 901       Node* n1 = n->in(i);
 902       const TypePtr* n1at = n1->adr_type();
 903       if (n1at != NULL) {
 904         nat = n1at;
 905         nidx = C->get_alias_index(n1at);
 906       }
 907     }
 908   }
 909   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
 910   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
 911     switch (n->Opcode()) {
 912     case Op_PrefetchAllocation:
 913       nidx = Compile::AliasIdxRaw;
 914       nat = TypeRawPtr::BOTTOM;
 915       break;
 916     }
 917   }
 918   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
 919     switch (n->Opcode()) {
 920     case Op_ClearArray:
 921       midx = Compile::AliasIdxRaw;
 922       mat = TypeRawPtr::BOTTOM;
 923       break;
 924     }
 925   }
 926   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
 927     switch (n->Opcode()) {
 928     case Op_Return:
 929     case Op_Rethrow:
 930     case Op_Halt:
 931     case Op_TailCall:
 932     case Op_TailJump:
 933       nidx = Compile::AliasIdxBot;
 934       nat = TypePtr::BOTTOM;
 935       break;
 936     }
 937   }
 938   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
 939     switch (n->Opcode()) {
 940     case Op_StrComp:
 941     case Op_StrEquals:
 942     case Op_StrIndexOf:
 943     case Op_StrIndexOfChar:
 944     case Op_AryEq:
 945     case Op_HasNegatives:
 946     case Op_MemBarVolatile:
 947     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
 948     case Op_StrInflatedCopy:
 949     case Op_StrCompressedCopy:
 950     case Op_OnSpinWait:
 951     case Op_EncodeISOArray:
 952       nidx = Compile::AliasIdxTop;
 953       nat = NULL;
 954       break;
 955     }
 956   }
 957   if (nidx != midx) {
 958     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
 959       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
 960       n->dump();
 961       m->dump();
 962     }
 963     assert(C->subsume_loads() && C->must_alias(nat, midx),
 964            "must not lose alias info when matching");
 965   }
 966 }
 967 #endif
 968 
 969 //------------------------------xform------------------------------------------
 970 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
 971 // Node in new-space.  Given a new-space Node, recursively walk his children.


1043       // Handle precedence edges for interior nodes
1044       for (i = n->len()-1; (uint)i >= n->req(); i--) {
1045         Node *m = n->in(i);
1046         if (m == NULL || C->node_arena()->contains(m)) continue;
1047         n->rm_prec(i);
1048         // set -1 to call add_prec() instead of set_req() during Step1
1049         mstack.push(m, Visit, n, -1);
1050       }
1051 
1052       // For constant debug info, I'd rather have unmatched constants.
1053       int cnt = n->req();
1054       JVMState* jvms = n->jvms();
1055       int debug_cnt = jvms ? jvms->debug_start() : cnt;
1056 
1057       // Now do only debug info.  Clone constants rather than matching.
1058       // Constants are represented directly in the debug info without
1059       // the need for executable machine instructions.
1060       // Monitor boxes are also represented directly.
1061       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
1062         Node *m = n->in(i);          // Get input
1063         int op = m->Opcode();
1064         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
1065         if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
1066             op == Op_ConF || op == Op_ConD || op == Op_ConL
1067             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
1068             ) {
1069           m = m->clone();
1070 #ifdef ASSERT
1071           _new2old_map.map(m->_idx, n);
1072 #endif
1073           mstack.push(m, Post_Visit, n, i); // Don't need to visit
1074           mstack.push(m->in(0), Visit, m, 0);
1075         } else {
1076           mstack.push(m, Visit, n, i);
1077         }
1078       }
1079 
1080       // And now walk his children, and convert his inputs to new-space.
1081       for( ; i >= 0; --i ) { // For all normal inputs do
1082         Node *m = n->in(i);  // Get input
1083         if(m != NULL)
1084           mstack.push(m, Visit, n, i);
1085       }
1086 


1281     } // End of for all arguments
1282 
1283     // Compute number of stack slots needed to restore stack in case of
1284     // Pascal-style argument popping.
1285     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
1286   }
1287 
1288   // Compute the max stack slot killed by any call.  These will not be
1289   // available for debug info, and will be used to adjust FIRST_STACK_mask
1290   // after all call sites have been visited.
1291   if( _out_arg_limit < out_arg_limit_per_call)
1292     _out_arg_limit = out_arg_limit_per_call;
1293 
1294   if (mcall) {
1295     // Kill the outgoing argument area, including any non-argument holes and
1296     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1297     // Since the max-per-method covers the max-per-call-site and debug info
1298     // is excluded on the max-per-method basis, debug info cannot land in
1299     // this killed area.
1300     uint r_cnt = mcall->tf()->range()->cnt();
1301     MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1302     if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
1303       C->record_method_not_compilable("unsupported outgoing calling sequence");
1304     } else {
1305       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1306         proj->_rout.Insert(OptoReg::Name(i));
1307     }
1308     if (proj->_rout.is_NotEmpty()) {
1309       push_projection(proj);
1310     }
1311   }
1312   // Transfer the safepoint information from the call to the mcall
1313   // Move the JVMState list
1314   msfpt->set_jvms(sfpt->jvms());
1315   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1316     jvms->set_map(sfpt);
1317   }
1318 
1319   // Debug inputs begin just after the last incoming parameter
1320   assert((mcall == NULL) || (mcall->jvms() == NULL) ||
1321          (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "");


1329     // ins are not complete then.
1330     msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node());
1331     if (msfpt->jvms() &&
1332         msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) {
1333       // We added an edge before jvms, so we must adapt the position of the ins.
1334       msfpt->jvms()->adapt_position(+1);
1335     }
1336   }
1337 
1338   // Registers killed by the call are set in the local scheduling pass
1339   // of Global Code Motion.
1340   return msfpt;
1341 }
1342 
1343 //---------------------------match_tree----------------------------------------
1344 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1345 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1346 // making GotoNodes while building the CFG and in init_spill_mask() to identify
1347 // a Load's result RegMask for memoization in idealreg2regmask[]
1348 MachNode *Matcher::match_tree( const Node *n ) {
1349   assert( n->Opcode() != Op_Phi, "cannot match" );
1350   assert( !n->is_block_start(), "cannot match" );
1351   // Set the mark for all locally allocated State objects.
1352   // When this call returns, the _states_arena arena will be reset
1353   // freeing all State objects.
1354   ResourceMark rm( &_states_arena );
1355 
1356   LabelRootDepth = 0;
1357 
1358   // StoreNodes require their Memory input to match any LoadNodes
1359   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1360 #ifdef ASSERT
1361   Node* save_mem_node = _mem_node;
1362   _mem_node = n->is_Store() ? (Node*)n : NULL;
1363 #endif
1364   // State object for root node of match tree
1365   // Allocate it on _states_arena - stack allocation can cause stack overflow.
1366   State *s = new (&_states_arena) State;
1367   s->_kids[0] = NULL;
1368   s->_kids[1] = NULL;
1369   s->_leaf = (Node*)n;


1908   BasicType sig_bt = T_OBJECT;
1909   calling_convention(&sig_bt, &regs, 1, is_outgoing);
1910   // Return argument 0 register.  In the LP64 build pointers
1911   // take 2 registers, but the VM wants only the 'main' name.
1912   return OptoReg::as_OptoReg(regs.first());
1913 }
1914 
1915 // This function identifies sub-graphs in which a 'load' node is
1916 // input to two different nodes, and such that it can be matched
1917 // with BMI instructions like blsi, blsr, etc.
1918 // Example : for b = -a[i] & a[i] can be matched to blsi r32, m32.
1919 // The graph is (AndL (SubL Con0 LoadL*) LoadL*), where LoadL*
1920 // refers to the same node.
1921 #ifdef X86
1922 // Match the generic fused operations pattern (op1 (op2 Con{ConType} mop) mop)
1923 // This is a temporary solution until we make DAGs expressible in ADL.
1924 template<typename ConType>
1925 class FusedPatternMatcher {
1926   Node* _op1_node;
1927   Node* _mop_node;
1928   int _con_op;
1929 
1930   static int match_next(Node* n, int next_op, int next_op_idx) {
1931     if (n->in(1) == NULL || n->in(2) == NULL) {
1932       return -1;
1933     }
1934 
1935     if (next_op_idx == -1) { // n is commutative, try rotations
1936       if (n->in(1)->Opcode() == next_op) {
1937         return 1;
1938       } else if (n->in(2)->Opcode() == next_op) {
1939         return 2;
1940       }
1941     } else {
1942       assert(next_op_idx > 0 && next_op_idx <= 2, "Bad argument index");
1943       if (n->in(next_op_idx)->Opcode() == next_op) {
1944         return next_op_idx;
1945       }
1946     }
1947     return -1;
1948   }
1949 public:
1950   FusedPatternMatcher(Node* op1_node, Node *mop_node, int con_op) :
1951     _op1_node(op1_node), _mop_node(mop_node), _con_op(con_op) { }
1952 
1953   bool match(int op1, int op1_op2_idx,  // op1 and the index of the op1->op2 edge, -1 if op1 is commutative
1954              int op2, int op2_con_idx,  // op2 and the index of the op2->con edge, -1 if op2 is commutative
1955              typename ConType::NativeType con_value) {
1956     if (_op1_node->Opcode() != op1) {
1957       return false;
1958     }
1959     if (_mop_node->outcnt() > 2) {
1960       return false;
1961     }
1962     op1_op2_idx = match_next(_op1_node, op2, op1_op2_idx);
1963     if (op1_op2_idx == -1) {
1964       return false;
1965     }
1966     // Memory operation must be the other edge
1967     int op1_mop_idx = (op1_op2_idx & 1) + 1;
1968 
1969     // Check that the mop node is really what we want
1970     if (_op1_node->in(op1_mop_idx) == _mop_node) {
1971       Node *op2_node = _op1_node->in(op1_op2_idx);
1972       if (op2_node->outcnt() > 1) {
1973         return false;
1974       }


1978         return false;
1979       }
1980       // Memory operation must be the other edge
1981       int op2_mop_idx = (op2_con_idx & 1) + 1;
1982       // Check that the memory operation is the same node
1983       if (op2_node->in(op2_mop_idx) == _mop_node) {
1984         // Now check the constant
1985         const Type* con_type = op2_node->in(op2_con_idx)->bottom_type();
1986         if (con_type != Type::TOP && ConType::as_self(con_type)->get_con() == con_value) {
1987           return true;
1988         }
1989       }
1990     }
1991     return false;
1992   }
1993 };
1994 
1995 
1996 bool Matcher::is_bmi_pattern(Node *n, Node *m) {
1997   if (n != NULL && m != NULL) {
1998     if (m->Opcode() == Op_LoadI) {
1999       FusedPatternMatcher<TypeInt> bmii(n, m, Op_ConI);
2000       return bmii.match(Op_AndI, -1, Op_SubI,  1,  0)  ||
2001              bmii.match(Op_AndI, -1, Op_AddI, -1, -1)  ||
2002              bmii.match(Op_XorI, -1, Op_AddI, -1, -1);
2003     } else if (m->Opcode() == Op_LoadL) {
2004       FusedPatternMatcher<TypeLong> bmil(n, m, Op_ConL);
2005       return bmil.match(Op_AndL, -1, Op_SubL,  1,  0) ||
2006              bmil.match(Op_AndL, -1, Op_AddL, -1, -1) ||
2007              bmil.match(Op_XorL, -1, Op_AddL, -1, -1);
2008     }
2009   }
2010   return false;
2011 }
2012 #endif // X86
2013 
2014 bool Matcher::clone_base_plus_offset_address(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) {
2015   Node *off = m->in(AddPNode::Offset);
2016   if (off->is_Con()) {
2017     address_visited.test_set(m->_idx); // Flag as address_visited
2018     mstack.push(m->in(AddPNode::Address), Pre_Visit);
2019     // Clone X+offset as it also folds into most addressing expressions
2020     mstack.push(off, Visit);
2021     mstack.push(m->in(AddPNode::Base), Pre_Visit);
2022     return true;
2023   }
2024   return false;
2025 }
2026 
2027 // A method-klass-holder may be passed in the inline_cache_reg
2028 // and then expanded into the inline_cache_reg and a method_oop register
2029 //   defined in ad_<arch>.cpp
2030 
2031 //------------------------------find_shared------------------------------------
2032 // Set bits if Node is shared or otherwise a root
2033 void Matcher::find_shared( Node *n ) {
2034   // Allocate stack of size C->live_nodes() * 2 to avoid frequent realloc
2035   MStack mstack(C->live_nodes() * 2);
2036   // Mark nodes as address_visited if they are inputs to an address expression
2037   VectorSet address_visited(Thread::current()->resource_area());
2038   mstack.push(n, Visit);     // Don't need to pre-visit root node
2039   while (mstack.is_nonempty()) {
2040     n = mstack.node();       // Leave node on stack
2041     Node_State nstate = mstack.state();
2042     uint nop = n->Opcode();
2043     if (nstate == Pre_Visit) {
2044       if (address_visited.test(n->_idx)) { // Visited in address already?
2045         // Flag as visited and shared now.
2046         set_visited(n);
2047       }
2048       if (is_visited(n)) {   // Visited already?
2049         // Node is shared and has no reason to clone.  Flag it as shared.
2050         // This causes it to match into a register for the sharing.
2051         set_shared(n);       // Flag as shared and
2052         mstack.pop();        // remove node from stack
2053         continue;
2054       }
2055       nstate = Visit; // Not already visited; so visit now
2056     }
2057     if (nstate == Visit) {
2058       mstack.set_state(Post_Visit);
2059       set_visited(n);   // Flag as visited now
2060       bool mem_op = false;
2061 
2062       switch( nop ) {  // Handle some opcodes special
2063       case Op_Phi:             // Treat Phis as shared roots
2064       case Op_Parm:
2065       case Op_Proj:            // All handled specially during matching
2066       case Op_SafePointScalarObject:
2067         set_shared(n);
2068         set_dontcare(n);
2069         break;
2070       case Op_If:
2071       case Op_CountedLoopEnd:
2072         mstack.set_state(Alt_Post_Visit); // Alternative way
2073         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
2074         // with matching cmp/branch in 1 instruction.  The Matcher needs the
2075         // Bool and CmpX side-by-side, because it can only get at constants
2076         // that are at the leaves of Match trees, and the Bool's condition acts
2077         // as a constant here.
2078         mstack.push(n->in(1), Visit);         // Clone the Bool
2079         mstack.push(n->in(0), Pre_Visit);     // Visit control input
2080         continue; // while (mstack.is_nonempty())
2081       case Op_ConvI2D:         // These forms efficiently match with a prior
2082       case Op_ConvI2F:         //   Load but not a following Store
2083         if( n->in(1)->is_Load() &&        // Prior load
2084             n->outcnt() == 1 &&           // Not already shared
2085             n->unique_out()->is_Store() ) // Following store
2086           set_shared(n);       // Force it to be a root
2087         break;
2088       case Op_ReverseBytesI:
2089       case Op_ReverseBytesL:
2090         if( n->in(1)->is_Load() &&        // Prior load
2091             n->outcnt() == 1 )            // Not already shared
2092           set_shared(n);                  // Force it to be a root
2093         break;
2094       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
2095       case Op_IfFalse:
2096       case Op_IfTrue:
2097       case Op_MachProj:
2098       case Op_MergeMem:
2099       case Op_Catch:
2100       case Op_CatchProj:
2101       case Op_CProj:
2102       case Op_JumpProj:
2103       case Op_JProj:
2104       case Op_NeverBranch:
2105         set_dontcare(n);
2106         break;
2107       case Op_Jump:
2108         mstack.push(n->in(1), Pre_Visit);     // Switch Value (could be shared)
2109         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
2110         continue;                             // while (mstack.is_nonempty())
2111       case Op_StrComp:
2112       case Op_StrEquals:
2113       case Op_StrIndexOf:
2114       case Op_StrIndexOfChar:
2115       case Op_AryEq:
2116       case Op_HasNegatives:
2117       case Op_StrInflatedCopy:
2118       case Op_StrCompressedCopy:
2119       case Op_EncodeISOArray:
2120         set_shared(n); // Force result into register (it will be anyways)
2121         break;
2122       case Op_ConP: {  // Convert pointers above the centerline to NUL
2123         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2124         const TypePtr* tp = tn->type()->is_ptr();
2125         if (tp->_ptr == TypePtr::AnyNull) {
2126           tn->set_type(TypePtr::NULL_PTR);
2127         }
2128         break;
2129       }
2130       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
2131         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2132         const TypePtr* tp = tn->type()->make_ptr();
2133         if (tp && tp->_ptr == TypePtr::AnyNull) {
2134           tn->set_type(TypeNarrowOop::NULL_PTR);
2135         }
2136         break;
2137       }
2138       case Op_Binary:         // These are introduced in the Post_Visit state.
2139         ShouldNotReachHere();
2140         break;
2141       case Op_ClearArray:
2142       case Op_SafePoint:
2143         mem_op = true;
2144         break;
2145       default:
2146         if( n->is_Store() ) {
2147           // Do match stores, despite no ideal reg
2148           mem_op = true;
2149           break;
2150         }
2151         if( n->is_Mem() ) { // Loads and LoadStores
2152           mem_op = true;
2153           // Loads must be root of match tree due to prior load conflict
2154           if( C->subsume_loads() == false )
2155             set_shared(n);
2156         }
2157         // Fall into default case
2158         if( !n->ideal_reg() )
2159           set_dontcare(n);  // Unmatchable Nodes
2160       } // end_switch
2161 
2162       for(int i = n->req() - 1; i >= 0; --i) { // For my children
2163         Node *m = n->in(i); // Get ith input
2164         if (m == NULL) continue;  // Ignore NULLs
2165         uint mop = m->Opcode();
2166 
2167         // Must clone all producers of flags, or we will not match correctly.
2168         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
2169         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
2170         // are also there, so we may match a float-branch to int-flags and
2171         // expect the allocator to haul the flags from the int-side to the
2172         // fp-side.  No can do.
2173         if( _must_clone[mop] ) {
2174           mstack.push(m, Visit);
2175           continue; // for(int i = ...)
2176         }
2177 
2178         if( mop == Op_AddP && m->in(AddPNode::Base)->is_DecodeNarrowPtr()) {
2179           // Bases used in addresses must be shared but since
2180           // they are shared through a DecodeN they may appear
2181           // to have a single use so force sharing here.
2182           set_shared(m->in(AddPNode::Base)->in(1));
2183         }
2184 
2185         // if 'n' and 'm' are part of a graph for BMI instruction, clone this node.
2186 #ifdef X86
2187         if (UseBMI1Instructions && is_bmi_pattern(n, m)) {
2188           mstack.push(m, Visit);
2189           continue;
2190         }
2191 #endif
2192 
2193         // Clone addressing expressions as they are "free" in memory access instructions
2194         if (mem_op && i == MemNode::Address && mop == Op_AddP &&
2195             // When there are other uses besides address expressions
2196             // put it on stack and mark as shared.
2197             !is_visited(m)) {
2198           // Some inputs for address expression are not put on stack
2199           // to avoid marking them as shared and forcing them into register
2200           // if they are used only in address expressions.
2201           // But they should be marked as shared if there are other uses
2202           // besides address expressions.
2203 
2204           if (clone_address_expressions(m->as_AddP(), mstack, address_visited)) {
2205             continue;
2206           }
2207         }   // if( mem_op &&
2208         mstack.push(m, Pre_Visit);
2209       }     // for(int i = ...)
2210     }
2211     else if (nstate == Alt_Post_Visit) {
2212       mstack.pop(); // Remove node from stack
2213       // We cannot remove the Cmp input from the Bool here, as the Bool may be
2214       // shared and all users of the Bool need to move the Cmp in parallel.
2215       // This leaves both the Bool and the If pointing at the Cmp.  To
2216       // prevent the Matcher from trying to Match the Cmp along both paths
2217       // BoolNode::match_edge always returns a zero.
2218 
2219       // We reorder the Op_If in a pre-order manner, so we can visit without
2220       // accidentally sharing the Cmp (the Bool and the If make 2 users).
2221       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
2222     }
2223     else if (nstate == Post_Visit) {
2224       mstack.pop(); // Remove node from stack
2225 
2226       // Now hack a few special opcodes
2227       switch( n->Opcode() ) {       // Handle some opcodes special
2228       case Op_StorePConditional:
2229       case Op_StoreIConditional:
2230       case Op_StoreLConditional:
2231       case Op_CompareAndExchangeB:
2232       case Op_CompareAndExchangeS:
2233       case Op_CompareAndExchangeI:
2234       case Op_CompareAndExchangeL:
2235       case Op_CompareAndExchangeP:
2236       case Op_CompareAndExchangeN:
2237       case Op_WeakCompareAndSwapB:
2238       case Op_WeakCompareAndSwapS:
2239       case Op_WeakCompareAndSwapI:
2240       case Op_WeakCompareAndSwapL:
2241       case Op_WeakCompareAndSwapP:
2242       case Op_WeakCompareAndSwapN:
2243       case Op_CompareAndSwapB:
2244       case Op_CompareAndSwapS:
2245       case Op_CompareAndSwapI:
2246       case Op_CompareAndSwapL:
2247       case Op_CompareAndSwapP:
2248       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
2249         Node *newval = n->in(MemNode::ValueIn );
2250         Node *oldval  = n->in(LoadStoreConditionalNode::ExpectedIn);
2251         Node *pair = new BinaryNode( oldval, newval );
2252         n->set_req(MemNode::ValueIn,pair);
2253         n->del_req(LoadStoreConditionalNode::ExpectedIn);
2254         break;
2255       }
2256       case Op_CMoveD:              // Convert trinary to binary-tree
2257       case Op_CMoveF:
2258       case Op_CMoveI:
2259       case Op_CMoveL:
2260       case Op_CMoveN:
2261       case Op_CMoveP:
2262       case Op_CMoveVD:  {
2263         // Restructure into a binary tree for Matching.  It's possible that
2264         // we could move this code up next to the graph reshaping for IfNodes
2265         // or vice-versa, but I do not want to debug this for Ladybird.
2266         // 10/2/2000 CNC.
2267         Node *pair1 = new BinaryNode(n->in(1),n->in(1)->in(1));
2268         n->set_req(1,pair1);
2269         Node *pair2 = new BinaryNode(n->in(2),n->in(3));
2270         n->set_req(2,pair2);
2271         n->del_req(3);
2272         break;
2273       }
2274       case Op_LoopLimit: {
2275         Node *pair1 = new BinaryNode(n->in(1),n->in(2));
2276         n->set_req(1,pair1);
2277         n->set_req(2,n->in(3));
2278         n->del_req(3);
2279         break;
2280       }
2281       case Op_StrEquals:
2282       case Op_StrIndexOfChar: {
2283         Node *pair1 = new BinaryNode(n->in(2),n->in(3));
2284         n->set_req(2,pair1);
2285         n->set_req(3,n->in(4));
2286         n->del_req(4);
2287         break;
2288       }
2289       case Op_StrComp:
2290       case Op_StrIndexOf: {
2291         Node *pair1 = new BinaryNode(n->in(2),n->in(3));
2292         n->set_req(2,pair1);
2293         Node *pair2 = new BinaryNode(n->in(4),n->in(5));
2294         n->set_req(3,pair2);
2295         n->del_req(5);
2296         n->del_req(4);
2297         break;
2298       }
2299       case Op_StrCompressedCopy:
2300       case Op_StrInflatedCopy:
2301       case Op_EncodeISOArray: {
2302         // Restructure into a binary tree for Matching.
2303         Node* pair = new BinaryNode(n->in(3), n->in(4));
2304         n->set_req(3, pair);
2305         n->del_req(4);
2306         break;
2307       }
2308       default:
2309         break;
2310       }
2311     }
2312     else {
2313       ShouldNotReachHere();
2314     }
2315   } // end of while (mstack.is_nonempty())
2316 }
2317 
2318 #ifdef ASSERT
2319 // machine-independent root to machine-dependent root
2320 void Matcher::dump_old2new_map() {
2321   _old2new_map.dump();
2322 }
2323 #endif
2324 
2325 //---------------------------collect_null_checks-------------------------------
2326 // Find null checks in the ideal graph; write a machine-specific node for
2327 // it.  Used by later implicit-null-check handling.  Actually collects
2328 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2329 // value being tested.
2330 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2331   Node *iff = proj->in(0);
2332   if( iff->Opcode() == Op_If ) {
2333     // During matching If's have Bool & Cmp side-by-side
2334     BoolNode *b = iff->in(1)->as_Bool();
2335     Node *cmp = iff->in(2);
2336     int opc = cmp->Opcode();
2337     if (opc != Op_CmpP && opc != Op_CmpN) return;
2338 
2339     const Type* ct = cmp->in(2)->bottom_type();
2340     if (ct == TypePtr::NULL_PTR ||
2341         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2342 
2343       bool push_it = false;
2344       if( proj->Opcode() == Op_IfTrue ) {
2345 #ifndef PRODUCT
2346         extern int all_null_checks_found;
2347         all_null_checks_found++;
2348 #endif
2349         if( b->_test._test == BoolTest::ne ) {
2350           push_it = true;
2351         }
2352       } else {
2353         assert( proj->Opcode() == Op_IfFalse, "" );
2354         if( b->_test._test == BoolTest::eq ) {
2355           push_it = true;
2356         }
2357       }
2358       if( push_it ) {
2359         _null_check_tests.push(proj);
2360         Node* val = cmp->in(1);
2361 #ifdef _LP64
2362         if (val->bottom_type()->isa_narrowoop() &&
2363             !Matcher::narrow_oop_use_complex_address()) {
2364           //
2365           // Look for DecodeN node which should be pinned to orig_proj.
2366           // On platforms (Sparc) which can not handle 2 adds
2367           // in addressing mode we have to keep a DecodeN node and
2368           // use it to do implicit NULL check in address.
2369           //
2370           // DecodeN node was pinned to non-null path (orig_proj) during
2371           // CastPP transformation in final_graph_reshaping_impl().
2372           //
2373           uint cnt = orig_proj->outcnt();


2414       // Is a match-tree root, so replace with the matched value
2415       _null_check_tests.map(i+1, new_val);
2416     } else {
2417       // Yank from candidate list
2418       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2419       _null_check_tests.map(i,_null_check_tests[--cnt]);
2420       _null_check_tests.pop();
2421       _null_check_tests.pop();
2422       i-=2;
2423     }
2424   }
2425 }
2426 
2427 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2428 // atomic instruction acting as a store_load barrier without any
2429 // intervening volatile load, and thus we don't need a barrier here.
2430 // We retain the Node to act as a compiler ordering barrier.
2431 bool Matcher::post_store_load_barrier(const Node* vmb) {
2432   Compile* C = Compile::current();
2433   assert(vmb->is_MemBar(), "");
2434   assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, "");
2435   const MemBarNode* membar = vmb->as_MemBar();
2436 
2437   // Get the Ideal Proj node, ctrl, that can be used to iterate forward
2438   Node* ctrl = NULL;
2439   for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) {
2440     Node* p = membar->fast_out(i);
2441     assert(p->is_Proj(), "only projections here");
2442     if ((p->as_Proj()->_con == TypeFunc::Control) &&
2443         !C->node_arena()->contains(p)) { // Unmatched old-space only
2444       ctrl = p;
2445       break;
2446     }
2447   }
2448   assert((ctrl != NULL), "missing control projection");
2449 
2450   for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) {
2451     Node *x = ctrl->fast_out(j);
2452     int xop = x->Opcode();
2453 
2454     // We don't need current barrier if we see another or a lock
2455     // before seeing volatile load.
2456     //
2457     // Op_Fastunlock previously appeared in the Op_* list below.
2458     // With the advent of 1-0 lock operations we're no longer guaranteed
2459     // that a monitor exit operation contains a serializing instruction.
2460 
2461     if (xop == Op_MemBarVolatile ||
2462         xop == Op_CompareAndExchangeB ||
2463         xop == Op_CompareAndExchangeS ||
2464         xop == Op_CompareAndExchangeI ||
2465         xop == Op_CompareAndExchangeL ||
2466         xop == Op_CompareAndExchangeP ||
2467         xop == Op_CompareAndExchangeN ||
2468         xop == Op_WeakCompareAndSwapB ||
2469         xop == Op_WeakCompareAndSwapS ||
2470         xop == Op_WeakCompareAndSwapL ||
2471         xop == Op_WeakCompareAndSwapP ||
2472         xop == Op_WeakCompareAndSwapN ||
2473         xop == Op_WeakCompareAndSwapI ||
2474         xop == Op_CompareAndSwapB ||
2475         xop == Op_CompareAndSwapS ||
2476         xop == Op_CompareAndSwapL ||
2477         xop == Op_CompareAndSwapP ||
2478         xop == Op_CompareAndSwapN ||
2479         xop == Op_CompareAndSwapI) {
2480       return true;
2481     }
2482 
2483     // Op_FastLock previously appeared in the Op_* list above.
2484     // With biased locking we're no longer guaranteed that a monitor
2485     // enter operation contains a serializing instruction.
2486     if ((xop == Op_FastLock) && !UseBiasedLocking) {
2487       return true;
2488     }
2489 
2490     if (x->is_MemBar()) {
2491       // We must retain this membar if there is an upcoming volatile
2492       // load, which will be followed by acquire membar.
2493       if (xop == Op_MemBarAcquire || xop == Op_LoadFence) {
2494         return false;
2495       } else {
2496         // For other kinds of barriers, check by pretending we
2497         // are them, and seeing if we can be removed.
2498         return post_store_load_barrier(x->as_MemBar());
2499       }
2500     }
2501 
2502     // probably not necessary to check for these
2503     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) {
2504       return false;
2505     }
2506   }
2507   return false;
2508 }
2509 
2510 // Check whether node n is a branch to an uncommon trap that we could
2511 // optimize as test with very high branch costs in case of going to
2512 // the uncommon trap. The code must be able to be recompiled to use
2513 // a cheaper test.




  26 #include "memory/allocation.inline.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "opto/ad.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/idealGraphPrinter.hpp"
  32 #include "opto/matcher.hpp"
  33 #include "opto/memnode.hpp"
  34 #include "opto/movenode.hpp"
  35 #include "opto/opcodes.hpp"
  36 #include "opto/regmask.hpp"
  37 #include "opto/rootnode.hpp"
  38 #include "opto/runtime.hpp"
  39 #include "opto/type.hpp"
  40 #include "opto/vectornode.hpp"
  41 #include "runtime/os.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 
  44 OptoReg::Name OptoReg::c_frame_pointer;
  45 
  46 const RegMask *Matcher::idealreg2regmask[static_cast<uint>(Opcodes::_last_machine_leaf)];
  47 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
  48 RegMask Matcher::STACK_ONLY_mask;
  49 RegMask Matcher::c_frame_ptr_mask;
  50 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
  51 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
  52 
  53 //---------------------------Matcher-------------------------------------------
  54 Matcher::Matcher()
  55 : PhaseTransform( Phase::Ins_Select ),
  56 #ifdef ASSERT
  57   _old2new_map(C->comp_arena()),
  58   _new2old_map(C->comp_arena()),
  59 #endif
  60   _shared_nodes(C->comp_arena()),
  61   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
  62   _swallowed(swallowed),
  63   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
  64   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
  65   _must_clone(must_clone),
  66   _register_save_policy(register_save_policy),
  67   _c_reg_save_policy(c_reg_save_policy),
  68   _register_save_type(register_save_type),
  69   _ruleName(ruleName),
  70   _allocation_started(false),
  71   _states_arena(Chunk::medium_size),
  72   _visited(&_states_arena),
  73   _shared(&_states_arena),
  74   _dontcare(&_states_arena) {
  75   C->set_matcher(this);
  76 
  77   idealreg2spillmask  [static_cast<uint>(Opcodes::Op_RegI)] = NULL;
  78   idealreg2spillmask  [static_cast<uint>(Opcodes::Op_RegN)] = NULL;
  79   idealreg2spillmask  [static_cast<uint>(Opcodes::Op_RegL)] = NULL;
  80   idealreg2spillmask  [static_cast<uint>(Opcodes::Op_RegF)] = NULL;
  81   idealreg2spillmask  [static_cast<uint>(Opcodes::Op_RegD)] = NULL;
  82   idealreg2spillmask  [static_cast<uint>(Opcodes::Op_RegP)] = NULL;
  83   idealreg2spillmask  [static_cast<uint>(Opcodes::Op_VecS)] = NULL;
  84   idealreg2spillmask  [static_cast<uint>(Opcodes::Op_VecD)] = NULL;
  85   idealreg2spillmask  [static_cast<uint>(Opcodes::Op_VecX)] = NULL;
  86   idealreg2spillmask  [static_cast<uint>(Opcodes::Op_VecY)] = NULL;
  87   idealreg2spillmask  [static_cast<uint>(Opcodes::Op_VecZ)] = NULL;
  88 
  89   idealreg2debugmask  [static_cast<uint>(Opcodes::Op_RegI)] = NULL;
  90   idealreg2debugmask  [static_cast<uint>(Opcodes::Op_RegN)] = NULL;
  91   idealreg2debugmask  [static_cast<uint>(Opcodes::Op_RegL)] = NULL;
  92   idealreg2debugmask  [static_cast<uint>(Opcodes::Op_RegF)] = NULL;
  93   idealreg2debugmask  [static_cast<uint>(Opcodes::Op_RegD)] = NULL;
  94   idealreg2debugmask  [static_cast<uint>(Opcodes::Op_RegP)] = NULL;
  95   idealreg2debugmask  [static_cast<uint>(Opcodes::Op_VecS)] = NULL;
  96   idealreg2debugmask  [static_cast<uint>(Opcodes::Op_VecD)] = NULL;
  97   idealreg2debugmask  [static_cast<uint>(Opcodes::Op_VecX)] = NULL;
  98   idealreg2debugmask  [static_cast<uint>(Opcodes::Op_VecY)] = NULL;
  99   idealreg2debugmask  [static_cast<uint>(Opcodes::Op_VecZ)] = NULL;
 100 
 101   idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_RegI)] = NULL;
 102   idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_RegN)] = NULL;
 103   idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_RegL)] = NULL;
 104   idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_RegF)] = NULL;
 105   idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_RegD)] = NULL;
 106   idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_RegP)] = NULL;
 107   idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_VecS)] = NULL;
 108   idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_VecD)] = NULL;
 109   idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_VecX)] = NULL;
 110   idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_VecY)] = NULL;
 111   idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_VecZ)] = NULL;
 112 
 113   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
 114 }
 115 
 116 //------------------------------warp_incoming_stk_arg------------------------
 117 // This warps a VMReg into an OptoReg::Name
 118 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
 119   OptoReg::Name warped;
 120   if( reg->is_stack() ) {  // Stack slot argument?
 121     warped = OptoReg::add(_old_SP, reg->reg2stack() );
 122     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
 123     if( warped >= _in_arg_limit )
 124       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
 125     if (!RegMask::can_represent_arg(warped)) {
 126       // the compiler cannot represent this method's calling sequence
 127       C->record_method_not_compilable("unsupported incoming calling sequence");
 128       return OptoReg::Bad;
 129     }
 130     return warped;
 131   }


 168 
 169 //---------------------------match---------------------------------------------
 170 void Matcher::match( ) {
 171   if( MaxLabelRootDepth < 100 ) { // Too small?
 172     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
 173     MaxLabelRootDepth = 100;
 174   }
 175   // One-time initialization of some register masks.
 176   init_spill_mask( C->root()->in(1) );
 177   _return_addr_mask = return_addr();
 178 #ifdef _LP64
 179   // Pointers take 2 slots in 64-bit land
 180   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
 181 #endif
 182 
 183   // Map a Java-signature return type into return register-value
 184   // machine registers for 0, 1 and 2 returned values.
 185   const TypeTuple *range = C->tf()->range();
 186   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
 187     // Get ideal-register return type
 188     Opcodes ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
 189     // Get machine return register
 190     Opcodes sop = C->start()->Opcode();
 191     OptoRegPair regs = return_value(ireg, false);
 192 
 193     // And mask for same
 194     _return_value_mask = RegMask(regs.first());
 195     if( OptoReg::is_valid(regs.second()) )
 196       _return_value_mask.Insert(regs.second());
 197   }
 198 
 199   // ---------------
 200   // Frame Layout
 201 
 202   // Need the method signature to determine the incoming argument types,
 203   // because the types determine which registers the incoming arguments are
 204   // in, and this affects the matched code.
 205   const TypeTuple *domain = C->tf()->domain();
 206   uint             argcnt = domain->cnt() - TypeFunc::Parms;
 207   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
 208   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
 209   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
 210   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );


 402 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
 403   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
 404   // Do all the pre-defined register masks
 405   rms[TypeFunc::Control  ] = RegMask::Empty;
 406   rms[TypeFunc::I_O      ] = RegMask::Empty;
 407   rms[TypeFunc::Memory   ] = RegMask::Empty;
 408   rms[TypeFunc::ReturnAdr] = ret_adr;
 409   rms[TypeFunc::FramePtr ] = fp;
 410   return rms;
 411 }
 412 
 413 //---------------------------init_first_stack_mask-----------------------------
 414 // Create the initial stack mask used by values spilling to the stack.
 415 // Disallow any debug info in outgoing argument areas by setting the
 416 // initial mask accordingly.
 417 void Matcher::init_first_stack_mask() {
 418 
 419   // Allocate storage for spill masks as masks for the appropriate load type.
 420   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+5));
 421 
 422   idealreg2spillmask  [static_cast<uint>(Opcodes::Op_RegN)] = &rms[0];
 423   idealreg2spillmask  [static_cast<uint>(Opcodes::Op_RegI)] = &rms[1];
 424   idealreg2spillmask  [static_cast<uint>(Opcodes::Op_RegL)] = &rms[2];
 425   idealreg2spillmask  [static_cast<uint>(Opcodes::Op_RegF)] = &rms[3];
 426   idealreg2spillmask  [static_cast<uint>(Opcodes::Op_RegD)] = &rms[4];
 427   idealreg2spillmask  [static_cast<uint>(Opcodes::Op_RegP)] = &rms[5];
 428 
 429   idealreg2debugmask  [static_cast<uint>(Opcodes::Op_RegN)] = &rms[6];
 430   idealreg2debugmask  [static_cast<uint>(Opcodes::Op_RegI)] = &rms[7];
 431   idealreg2debugmask  [static_cast<uint>(Opcodes::Op_RegL)] = &rms[8];
 432   idealreg2debugmask  [static_cast<uint>(Opcodes::Op_RegF)] = &rms[9];
 433   idealreg2debugmask  [static_cast<uint>(Opcodes::Op_RegD)] = &rms[10];
 434   idealreg2debugmask  [static_cast<uint>(Opcodes::Op_RegP)] = &rms[11];
 435 
 436   idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_RegN)] = &rms[12];
 437   idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_RegI)] = &rms[13];
 438   idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_RegL)] = &rms[14];
 439   idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_RegF)] = &rms[15];
 440   idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_RegD)] = &rms[16];
 441   idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_RegP)] = &rms[17];
 442 
 443   idealreg2spillmask  [static_cast<uint>(Opcodes::Op_VecS)] = &rms[18];
 444   idealreg2spillmask  [static_cast<uint>(Opcodes::Op_VecD)] = &rms[19];
 445   idealreg2spillmask  [static_cast<uint>(Opcodes::Op_VecX)] = &rms[20];
 446   idealreg2spillmask  [static_cast<uint>(Opcodes::Op_VecY)] = &rms[21];
 447   idealreg2spillmask  [static_cast<uint>(Opcodes::Op_VecZ)] = &rms[22];
 448 
 449   OptoReg::Name i;
 450 
 451   // At first, start with the empty mask
 452   C->FIRST_STACK_mask().Clear();
 453 
 454   // Add in the incoming argument area
 455   OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 456   for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) {
 457     C->FIRST_STACK_mask().Insert(i);
 458   }
 459   // Add in all bits past the outgoing argument area
 460   guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
 461             "must be able to represent all call arguments in reg mask");
 462   OptoReg::Name init = _out_arg_limit;
 463   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) {
 464     C->FIRST_STACK_mask().Insert(i);
 465   }
 466   // Finally, set the "infinite stack" bit.
 467   C->FIRST_STACK_mask().set_AllStack();
 468 
 469   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
 470   RegMask aligned_stack_mask = C->FIRST_STACK_mask();
 471   // Keep spill masks aligned.
 472   aligned_stack_mask.clear_to_pairs();
 473   assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 474 
 475   *idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegP)] = *idealreg2regmask[static_cast<uint>(Opcodes::Op_RegP)];
 476 #ifdef _LP64
 477   *idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegN)] = *idealreg2regmask[static_cast<uint>(Opcodes::Op_RegN)];
 478    idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegN)]->OR(C->FIRST_STACK_mask());
 479    idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegP)]->OR(aligned_stack_mask);
 480 #else
 481    idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegP)]->OR(C->FIRST_STACK_mask());
 482 #endif
 483   *idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegI)] = *idealreg2regmask[static_cast<uint>(Opcodes::Op_RegI)];
 484    idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegI)]->OR(C->FIRST_STACK_mask());
 485   *idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegL)] = *idealreg2regmask[static_cast<uint>(Opcodes::Op_RegL)];
 486    idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegL)]->OR(aligned_stack_mask);
 487   *idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegF)] = *idealreg2regmask[static_cast<uint>(Opcodes::Op_RegF)];
 488    idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegF)]->OR(C->FIRST_STACK_mask());
 489   *idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegD)] = *idealreg2regmask[static_cast<uint>(Opcodes::Op_RegD)];
 490    idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegD)]->OR(aligned_stack_mask);
 491 
 492   if (Matcher::vector_size_supported(T_BYTE,4)) {
 493     *idealreg2spillmask[static_cast<uint>(Opcodes::Op_VecS)] = *idealreg2regmask[static_cast<uint>(Opcodes::Op_VecS)];
 494      idealreg2spillmask[static_cast<uint>(Opcodes::Op_VecS)]->OR(C->FIRST_STACK_mask());
 495   }
 496   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 497     // For VecD we need dual alignment and 8 bytes (2 slots) for spills.
 498     // RA guarantees such alignment since it is needed for Double and Long values.
 499     *idealreg2spillmask[static_cast<uint>(Opcodes::Op_VecD)] = *idealreg2regmask[static_cast<uint>(Opcodes::Op_VecD)];
 500      idealreg2spillmask[static_cast<uint>(Opcodes::Op_VecD)]->OR(aligned_stack_mask);
 501   }
 502   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 503     // For VecX we need quadro alignment and 16 bytes (4 slots) for spills.
 504     //
 505     // RA can use input arguments stack slots for spills but until RA
 506     // we don't know frame size and offset of input arg stack slots.
 507     //
 508     // Exclude last input arg stack slots to avoid spilling vectors there
 509     // otherwise vector spills could stomp over stack slots in caller frame.
 510     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 511     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) {
 512       aligned_stack_mask.Remove(in);
 513       in = OptoReg::add(in, -1);
 514     }
 515      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
 516      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 517     *idealreg2spillmask[static_cast<uint>(Opcodes::Op_VecX)] = *idealreg2regmask[static_cast<uint>(Opcodes::Op_VecX)];
 518      idealreg2spillmask[static_cast<uint>(Opcodes::Op_VecX)]->OR(aligned_stack_mask);
 519   }
 520   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 521     // For VecY we need octo alignment and 32 bytes (8 slots) for spills.
 522     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 523     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) {
 524       aligned_stack_mask.Remove(in);
 525       in = OptoReg::add(in, -1);
 526     }
 527      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
 528      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 529     *idealreg2spillmask[static_cast<uint>(Opcodes::Op_VecY)] = *idealreg2regmask[static_cast<uint>(Opcodes::Op_VecY)];
 530      idealreg2spillmask[static_cast<uint>(Opcodes::Op_VecY)]->OR(aligned_stack_mask);
 531   }
 532   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 533     // For VecZ we need enough alignment and 64 bytes (16 slots) for spills.
 534     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 535     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecZ); k++) {
 536       aligned_stack_mask.Remove(in);
 537       in = OptoReg::add(in, -1);
 538     }
 539      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecZ);
 540      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 541     *idealreg2spillmask[static_cast<uint>(Opcodes::Op_VecZ)] = *idealreg2regmask[static_cast<uint>(Opcodes::Op_VecZ)];
 542      idealreg2spillmask[static_cast<uint>(Opcodes::Op_VecZ)]->OR(aligned_stack_mask);
 543   }
 544    if (UseFPUForSpilling) {
 545      // This mask logic assumes that the spill operations are
 546      // symmetric and that the registers involved are the same size.
 547      // On sparc for instance we may have to use 64 bit moves will
 548      // kill 2 registers when used with F0-F31.
 549      idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegI)]->OR(*idealreg2regmask[static_cast<uint>(Opcodes::Op_RegF)]);
 550      idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegF)]->OR(*idealreg2regmask[static_cast<uint>(Opcodes::Op_RegI)]);
 551 #ifdef _LP64
 552      idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegN)]->OR(*idealreg2regmask[static_cast<uint>(Opcodes::Op_RegF)]);
 553      idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegL)]->OR(*idealreg2regmask[static_cast<uint>(Opcodes::Op_RegD)]);
 554      idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegD)]->OR(*idealreg2regmask[static_cast<uint>(Opcodes::Op_RegL)]);
 555      idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegP)]->OR(*idealreg2regmask[static_cast<uint>(Opcodes::Op_RegD)]);
 556 #else
 557      idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegP)]->OR(*idealreg2regmask[static_cast<uint>(Opcodes::Op_RegF)]);
 558 #ifdef ARM
 559      // ARM has support for moving 64bit values between a pair of
 560      // integer registers and a double register
 561      idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegL)]->OR(*idealreg2regmask[static_cast<uint>(Opcodes::Op_RegD)]);
 562      idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegD)]->OR(*idealreg2regmask[static_cast<uint>(Opcodes::Op_RegL)]);
 563 #endif
 564 #endif
 565    }
 566 
 567   // Make up debug masks.  Any spill slot plus callee-save registers.
 568   // Caller-save registers are assumed to be trashable by the various
 569   // inline-cache fixup routines.
 570   *idealreg2debugmask  [static_cast<uint>(Opcodes::Op_RegN)]= *idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegN)];
 571   *idealreg2debugmask  [static_cast<uint>(Opcodes::Op_RegI)]= *idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegI)];
 572   *idealreg2debugmask  [static_cast<uint>(Opcodes::Op_RegL)]= *idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegL)];
 573   *idealreg2debugmask  [static_cast<uint>(Opcodes::Op_RegF)]= *idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegF)];
 574   *idealreg2debugmask  [static_cast<uint>(Opcodes::Op_RegD)]= *idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegD)];
 575   *idealreg2debugmask  [static_cast<uint>(Opcodes::Op_RegP)]= *idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegP)];
 576 
 577   *idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_RegN)]= *idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegN)];
 578   *idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_RegI)]= *idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegI)];
 579   *idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_RegL)]= *idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegL)];
 580   *idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_RegF)]= *idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegF)];
 581   *idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_RegD)]= *idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegD)];
 582   *idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_RegP)]= *idealreg2spillmask[static_cast<uint>(Opcodes::Op_RegP)];
 583 
 584   // Prevent stub compilations from attempting to reference
 585   // callee-saved registers from debug info
 586   bool exclude_soe = !Compile::current()->is_method_compilation();
 587 
 588   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 589     // registers the caller has to save do not work
 590     if( _register_save_policy[i] == 'C' ||
 591         _register_save_policy[i] == 'A' ||
 592         (_register_save_policy[i] == 'E' && exclude_soe) ) {
 593       idealreg2debugmask  [static_cast<uint>(Opcodes::Op_RegN)]->Remove(i);
 594       idealreg2debugmask  [static_cast<uint>(Opcodes::Op_RegI)]->Remove(i); // Exclude save-on-call
 595       idealreg2debugmask  [static_cast<uint>(Opcodes::Op_RegL)]->Remove(i); // registers from debug
 596       idealreg2debugmask  [static_cast<uint>(Opcodes::Op_RegF)]->Remove(i); // masks
 597       idealreg2debugmask  [static_cast<uint>(Opcodes::Op_RegD)]->Remove(i);
 598       idealreg2debugmask  [static_cast<uint>(Opcodes::Op_RegP)]->Remove(i);
 599 
 600       idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_RegN)]->Remove(i);
 601       idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_RegI)]->Remove(i);
 602       idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_RegL)]->Remove(i);
 603       idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_RegF)]->Remove(i);
 604       idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_RegD)]->Remove(i);
 605       idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_RegP)]->Remove(i);
 606     }
 607   }
 608 
 609   // Subtract the register we use to save the SP for MethodHandle
 610   // invokes to from the debug mask.
 611   const RegMask save_mask = method_handle_invoke_SP_save_mask();
 612   idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_RegN)]->SUBTRACT(save_mask);
 613   idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_RegI)]->SUBTRACT(save_mask);
 614   idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_RegL)]->SUBTRACT(save_mask);
 615   idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_RegF)]->SUBTRACT(save_mask);
 616   idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_RegD)]->SUBTRACT(save_mask);
 617   idealreg2mhdebugmask[static_cast<uint>(Opcodes::Op_RegP)]->SUBTRACT(save_mask);
 618 }
 619 
 620 //---------------------------is_save_on_entry----------------------------------
 621 bool Matcher::is_save_on_entry( int reg ) {
 622   return
 623     _register_save_policy[reg] == 'E' ||
 624     _register_save_policy[reg] == 'A' || // Save-on-entry register?
 625     // Also save argument registers in the trampolining stubs
 626     (C->save_argument_registers() && is_spillable_arg(reg));
 627 }
 628 
 629 //---------------------------Fixup_Save_On_Entry-------------------------------
 630 void Matcher::Fixup_Save_On_Entry( ) {
 631   init_first_stack_mask();
 632 
 633   Node *root = C->root();       // Short name for root
 634   // Count number of save-on-entry registers.
 635   uint soe_cnt = number_of_saved_registers();
 636   uint i;
 637 


 665 #ifdef _LP64
 666     // Need two slots for ptrs in 64-bit land
 667     reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(reg), 1));
 668 #endif
 669   }
 670 
 671   // Input RegMask array shared by all TailCalls
 672   uint tail_call_edge_cnt = TypeFunc::Parms+2;
 673   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 674 
 675   // Input RegMask array shared by all TailJumps
 676   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
 677   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 678 
 679   // TailCalls have 2 returned values (target & moop), whose masks come
 680   // from the usual MachNode/MachOper mechanism.  Find a sample
 681   // TailCall to extract these masks and put the correct masks into
 682   // the tail_call_rms array.
 683   for( i=1; i < root->req(); i++ ) {
 684     MachReturnNode *m = root->in(i)->as_MachReturn();
 685     if( m->ideal_Opcode() == Opcodes::Op_TailCall ) {
 686       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 687       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 688       break;
 689     }
 690   }
 691 
 692   // TailJumps have 2 returned values (target & ex_oop), whose masks come
 693   // from the usual MachNode/MachOper mechanism.  Find a sample
 694   // TailJump to extract these masks and put the correct masks into
 695   // the tail_jump_rms array.
 696   for( i=1; i < root->req(); i++ ) {
 697     MachReturnNode *m = root->in(i)->as_MachReturn();
 698     if( m->ideal_Opcode() == Opcodes::Op_TailJump ) {
 699       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 700       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 701       break;
 702     }
 703   }
 704 
 705   // Input RegMask array shared by all Halts
 706   uint halt_edge_cnt = TypeFunc::Parms;
 707   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 708 
 709   // Capture the return input masks into each exit flavor
 710   for( i=1; i < root->req(); i++ ) {
 711     MachReturnNode *exit = root->in(i)->as_MachReturn();
 712     switch( exit->ideal_Opcode() ) {
 713       case Opcodes::Op_Return   : exit->_in_rms = ret_rms;  break;
 714       case Opcodes::Op_Rethrow  : exit->_in_rms = reth_rms; break;
 715       case Opcodes::Op_TailCall : exit->_in_rms = tail_call_rms; break;
 716       case Opcodes::Op_TailJump : exit->_in_rms = tail_jump_rms; break;
 717       case Opcodes::Op_Halt     : exit->_in_rms = halt_rms; break;
 718       default          : ShouldNotReachHere();
 719     }
 720   }
 721 
 722   // Next unused projection number from Start.
 723   int proj_cnt = C->tf()->domain()->cnt();
 724 
 725   // Do all the save-on-entry registers.  Make projections from Start for
 726   // them, and give them a use at the exit points.  To the allocator, they
 727   // look like incoming register arguments.
 728   for( i = 0; i < _last_Mach_Reg; i++ ) {
 729     if( is_save_on_entry(i) ) {
 730 
 731       // Add the save-on-entry to the mask array
 732       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
 733       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
 734       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
 735       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
 736       // Halts need the SOE registers, but only in the stack as debug info.
 737       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
 738       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[static_cast<uint>(_register_save_type[i])];
 739 
 740       Node *mproj;
 741 
 742       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
 743       // into a single RegD.
 744       if( (i&1) == 0 &&
 745           _register_save_type[i  ] == Opcodes::Op_RegF &&
 746           _register_save_type[i+1] == Opcodes::Op_RegF &&
 747           is_save_on_entry(i+1) ) {
 748         // Add other bit for double
 749         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 750         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 751         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 752         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 753         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 754         mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Opcodes::Op_RegD );
 755         proj_cnt += 2;          // Skip 2 for doubles
 756       }
 757       else if( (i&1) == 1 &&    // Else check for high half of double
 758                _register_save_type[i-1] == Opcodes::Op_RegF &&
 759                _register_save_type[i  ] == Opcodes::Op_RegF &&
 760                is_save_on_entry(i-1) ) {
 761         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 762         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 763         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 764         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 765         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 766         mproj = C->top();
 767       }
 768       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
 769       // into a single RegL.
 770       else if( (i&1) == 0 &&
 771           _register_save_type[i  ] == Opcodes::Op_RegI &&
 772           _register_save_type[i+1] == Opcodes::Op_RegI &&
 773         is_save_on_entry(i+1) ) {
 774         // Add other bit for long
 775         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 776         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 777         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 778         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 779         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 780         mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Opcodes::Op_RegL );
 781         proj_cnt += 2;          // Skip 2 for longs
 782       }
 783       else if( (i&1) == 1 &&    // Else check for high half of long
 784                _register_save_type[i-1] == Opcodes::Op_RegI &&
 785                _register_save_type[i  ] == Opcodes::Op_RegI &&
 786                is_save_on_entry(i-1) ) {
 787         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 788         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 789         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 790         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 791         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 792         mproj = C->top();
 793       } else {
 794         // Make a projection for it off the Start
 795         mproj = new MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
 796       }
 797 
 798       ret_edge_cnt ++;
 799       reth_edge_cnt ++;
 800       tail_call_edge_cnt ++;
 801       tail_jump_edge_cnt ++;
 802       halt_edge_cnt ++;
 803 
 804       // Add a use of the SOE register to all exit paths
 805       for( uint j=1; j < root->req(); j++ )
 806         root->in(j)->add_req(mproj);
 807     } // End of if a save-on-entry register
 808   } // End of for all machine registers
 809 }
 810 
 811 //------------------------------init_spill_mask--------------------------------
 812 void Matcher::init_spill_mask( Node *ret ) {
 813   if( idealreg2regmask[static_cast<uint>(Opcodes::Op_RegI)] ) return; // One time only init
 814 
 815   OptoReg::c_frame_pointer = c_frame_pointer();
 816   c_frame_ptr_mask = c_frame_pointer();
 817 #ifdef _LP64
 818   // pointers are twice as big
 819   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
 820 #endif
 821 
 822   // Start at OptoReg::stack0()
 823   STACK_ONLY_mask.Clear();
 824   OptoReg::Name init = OptoReg::stack2reg(0);
 825   // STACK_ONLY_mask is all stack bits
 826   OptoReg::Name i;
 827   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 828     STACK_ONLY_mask.Insert(i);
 829   // Also set the "infinite stack" bit.
 830   STACK_ONLY_mask.set_AllStack();
 831 
 832   // Copy the register names over into the shared world
 833   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {


 839   // Grab the Frame Pointer
 840   Node *fp  = ret->in(TypeFunc::FramePtr);
 841   Node *mem = ret->in(TypeFunc::Memory);
 842   const TypePtr* atp = TypePtr::BOTTOM;
 843   // Share frame pointer while making spill ops
 844   set_shared(fp);
 845 
 846   // Compute generic short-offset Loads
 847 #ifdef _LP64
 848   MachNode *spillCP = match_tree(new LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
 849 #endif
 850   MachNode *spillI  = match_tree(new LoadINode(NULL,mem,fp,atp,TypeInt::INT,MemNode::unordered));
 851   MachNode *spillL  = match_tree(new LoadLNode(NULL,mem,fp,atp,TypeLong::LONG,MemNode::unordered, LoadNode::DependsOnlyOnTest, false));
 852   MachNode *spillF  = match_tree(new LoadFNode(NULL,mem,fp,atp,Type::FLOAT,MemNode::unordered));
 853   MachNode *spillD  = match_tree(new LoadDNode(NULL,mem,fp,atp,Type::DOUBLE,MemNode::unordered));
 854   MachNode *spillP  = match_tree(new LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
 855   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
 856          spillD != NULL && spillP != NULL, "");
 857   // Get the ADLC notion of the right regmask, for each basic type.
 858 #ifdef _LP64
 859   idealreg2regmask[static_cast<uint>(Opcodes::Op_RegN)] = &spillCP->out_RegMask();
 860 #endif
 861   idealreg2regmask[static_cast<uint>(Opcodes::Op_RegI)] = &spillI->out_RegMask();
 862   idealreg2regmask[static_cast<uint>(Opcodes::Op_RegL)] = &spillL->out_RegMask();
 863   idealreg2regmask[static_cast<uint>(Opcodes::Op_RegF)] = &spillF->out_RegMask();
 864   idealreg2regmask[static_cast<uint>(Opcodes::Op_RegD)] = &spillD->out_RegMask();
 865   idealreg2regmask[static_cast<uint>(Opcodes::Op_RegP)] = &spillP->out_RegMask();
 866 
 867   // Vector regmasks.
 868   if (Matcher::vector_size_supported(T_BYTE,4)) {
 869     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
 870     MachNode *spillVectS = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS));
 871     idealreg2regmask[static_cast<uint>(Opcodes::Op_VecS)] = &spillVectS->out_RegMask();
 872   }
 873   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 874     MachNode *spillVectD = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD));
 875     idealreg2regmask[static_cast<uint>(Opcodes::Op_VecD)] = &spillVectD->out_RegMask();
 876   }
 877   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 878     MachNode *spillVectX = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX));
 879     idealreg2regmask[static_cast<uint>(Opcodes::Op_VecX)] = &spillVectX->out_RegMask();
 880   }
 881   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 882     MachNode *spillVectY = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY));
 883     idealreg2regmask[static_cast<uint>(Opcodes::Op_VecY)] = &spillVectY->out_RegMask();
 884   }
 885   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 886     MachNode *spillVectZ = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTZ));
 887     idealreg2regmask[static_cast<uint>(Opcodes::Op_VecZ)] = &spillVectZ->out_RegMask();
 888   }
 889 }
 890 
 891 #ifdef ASSERT
 892 static void match_alias_type(Compile* C, Node* n, Node* m) {
 893   if (!VerifyAliases)  return;  // do not go looking for trouble by default
 894   const TypePtr* nat = n->adr_type();
 895   const TypePtr* mat = m->adr_type();
 896   int nidx = C->get_alias_index(nat);
 897   int midx = C->get_alias_index(mat);
 898   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
 899   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
 900     for (uint i = 1; i < n->req(); i++) {
 901       Node* n1 = n->in(i);
 902       const TypePtr* n1at = n1->adr_type();
 903       if (n1at != NULL) {
 904         nat = n1at;
 905         nidx = C->get_alias_index(n1at);
 906       }
 907     }
 908   }
 909   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
 910   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
 911     switch (n->Opcode()) {
 912     case Opcodes::Op_PrefetchAllocation:
 913       nidx = Compile::AliasIdxRaw;
 914       nat = TypeRawPtr::BOTTOM;
 915       break;
 916     }
 917   }
 918   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
 919     switch (n->Opcode()) {
 920     case Opcodes::Op_ClearArray:
 921       midx = Compile::AliasIdxRaw;
 922       mat = TypeRawPtr::BOTTOM;
 923       break;
 924     }
 925   }
 926   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
 927     switch (n->Opcode()) {
 928     case Opcodes::Op_Return:
 929     case Opcodes::Op_Rethrow:
 930     case Opcodes::Op_Halt:
 931     case Opcodes::Op_TailCall:
 932     case Opcodes::Op_TailJump:
 933       nidx = Compile::AliasIdxBot;
 934       nat = TypePtr::BOTTOM;
 935       break;
 936     }
 937   }
 938   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
 939     switch (n->Opcode()) {
 940     case Opcodes::Op_StrComp:
 941     case Opcodes::Op_StrEquals:
 942     case Opcodes::Op_StrIndexOf:
 943     case Opcodes::Op_StrIndexOfChar:
 944     case Opcodes::Op_AryEq:
 945     case Opcodes::Op_HasNegatives:
 946     case Opcodes::Op_MemBarVolatile:
 947     case Opcodes::Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
 948     case Opcodes::Op_StrInflatedCopy:
 949     case Opcodes::Op_StrCompressedCopy:
 950     case Opcodes::Op_OnSpinWait:
 951     case Opcodes::Op_EncodeISOArray:
 952       nidx = Compile::AliasIdxTop;
 953       nat = NULL;
 954       break;
 955     }
 956   }
 957   if (nidx != midx) {
 958     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
 959       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
 960       n->dump();
 961       m->dump();
 962     }
 963     assert(C->subsume_loads() && C->must_alias(nat, midx),
 964            "must not lose alias info when matching");
 965   }
 966 }
 967 #endif
 968 
 969 //------------------------------xform------------------------------------------
 970 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
 971 // Node in new-space.  Given a new-space Node, recursively walk his children.


1043       // Handle precedence edges for interior nodes
1044       for (i = n->len()-1; (uint)i >= n->req(); i--) {
1045         Node *m = n->in(i);
1046         if (m == NULL || C->node_arena()->contains(m)) continue;
1047         n->rm_prec(i);
1048         // set -1 to call add_prec() instead of set_req() during Step1
1049         mstack.push(m, Visit, n, -1);
1050       }
1051 
1052       // For constant debug info, I'd rather have unmatched constants.
1053       int cnt = n->req();
1054       JVMState* jvms = n->jvms();
1055       int debug_cnt = jvms ? jvms->debug_start() : cnt;
1056 
1057       // Now do only debug info.  Clone constants rather than matching.
1058       // Constants are represented directly in the debug info without
1059       // the need for executable machine instructions.
1060       // Monitor boxes are also represented directly.
1061       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
1062         Node *m = n->in(i);          // Get input
1063         Opcodes op = m->Opcode();
1064         assert((op == Opcodes::Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
1065         if( op == Opcodes::Op_ConI || op == Opcodes::Op_ConP || op == Opcodes::Op_ConN || op == Opcodes::Op_ConNKlass ||
1066             op == Opcodes::Op_ConF || op == Opcodes::Op_ConD || op == Opcodes::Op_ConL
1067             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
1068             ) {
1069           m = m->clone();
1070 #ifdef ASSERT
1071           _new2old_map.map(m->_idx, n);
1072 #endif
1073           mstack.push(m, Post_Visit, n, i); // Don't need to visit
1074           mstack.push(m->in(0), Visit, m, 0);
1075         } else {
1076           mstack.push(m, Visit, n, i);
1077         }
1078       }
1079 
1080       // And now walk his children, and convert his inputs to new-space.
1081       for( ; i >= 0; --i ) { // For all normal inputs do
1082         Node *m = n->in(i);  // Get input
1083         if(m != NULL)
1084           mstack.push(m, Visit, n, i);
1085       }
1086 


1281     } // End of for all arguments
1282 
1283     // Compute number of stack slots needed to restore stack in case of
1284     // Pascal-style argument popping.
1285     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
1286   }
1287 
1288   // Compute the max stack slot killed by any call.  These will not be
1289   // available for debug info, and will be used to adjust FIRST_STACK_mask
1290   // after all call sites have been visited.
1291   if( _out_arg_limit < out_arg_limit_per_call)
1292     _out_arg_limit = out_arg_limit_per_call;
1293 
1294   if (mcall) {
1295     // Kill the outgoing argument area, including any non-argument holes and
1296     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1297     // Since the max-per-method covers the max-per-call-site and debug info
1298     // is excluded on the max-per-method basis, debug info cannot land in
1299     // this killed area.
1300     uint r_cnt = mcall->tf()->range()->cnt();
1301     MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::Empty, static_cast<Opcodes>(MachProjNode::projType::fat_proj) );
1302     if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
1303       C->record_method_not_compilable("unsupported outgoing calling sequence");
1304     } else {
1305       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1306         proj->_rout.Insert(OptoReg::Name(i));
1307     }
1308     if (proj->_rout.is_NotEmpty()) {
1309       push_projection(proj);
1310     }
1311   }
1312   // Transfer the safepoint information from the call to the mcall
1313   // Move the JVMState list
1314   msfpt->set_jvms(sfpt->jvms());
1315   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1316     jvms->set_map(sfpt);
1317   }
1318 
1319   // Debug inputs begin just after the last incoming parameter
1320   assert((mcall == NULL) || (mcall->jvms() == NULL) ||
1321          (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "");


1329     // ins are not complete then.
1330     msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node());
1331     if (msfpt->jvms() &&
1332         msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) {
1333       // We added an edge before jvms, so we must adapt the position of the ins.
1334       msfpt->jvms()->adapt_position(+1);
1335     }
1336   }
1337 
1338   // Registers killed by the call are set in the local scheduling pass
1339   // of Global Code Motion.
1340   return msfpt;
1341 }
1342 
1343 //---------------------------match_tree----------------------------------------
1344 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1345 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1346 // making GotoNodes while building the CFG and in init_spill_mask() to identify
1347 // a Load's result RegMask for memoization in idealreg2regmask[]
1348 MachNode *Matcher::match_tree( const Node *n ) {
1349   assert( n->Opcode() != Opcodes::Op_Phi, "cannot match" );
1350   assert( !n->is_block_start(), "cannot match" );
1351   // Set the mark for all locally allocated State objects.
1352   // When this call returns, the _states_arena arena will be reset
1353   // freeing all State objects.
1354   ResourceMark rm( &_states_arena );
1355 
1356   LabelRootDepth = 0;
1357 
1358   // StoreNodes require their Memory input to match any LoadNodes
1359   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1360 #ifdef ASSERT
1361   Node* save_mem_node = _mem_node;
1362   _mem_node = n->is_Store() ? (Node*)n : NULL;
1363 #endif
1364   // State object for root node of match tree
1365   // Allocate it on _states_arena - stack allocation can cause stack overflow.
1366   State *s = new (&_states_arena) State;
1367   s->_kids[0] = NULL;
1368   s->_kids[1] = NULL;
1369   s->_leaf = (Node*)n;


1908   BasicType sig_bt = T_OBJECT;
1909   calling_convention(&sig_bt, &regs, 1, is_outgoing);
1910   // Return argument 0 register.  In the LP64 build pointers
1911   // take 2 registers, but the VM wants only the 'main' name.
1912   return OptoReg::as_OptoReg(regs.first());
1913 }
1914 
1915 // This function identifies sub-graphs in which a 'load' node is
1916 // input to two different nodes, and such that it can be matched
1917 // with BMI instructions like blsi, blsr, etc.
1918 // Example : for b = -a[i] & a[i] can be matched to blsi r32, m32.
1919 // The graph is (AndL (SubL Con0 LoadL*) LoadL*), where LoadL*
1920 // refers to the same node.
1921 #ifdef X86
1922 // Match the generic fused operations pattern (op1 (op2 Con{ConType} mop) mop)
1923 // This is a temporary solution until we make DAGs expressible in ADL.
1924 template<typename ConType>
1925 class FusedPatternMatcher {
1926   Node* _op1_node;
1927   Node* _mop_node;
1928   Opcodes _con_op;
1929 
1930   static int match_next(Node* n, Opcodes next_op, int next_op_idx) {
1931     if (n->in(1) == NULL || n->in(2) == NULL) {
1932       return -1;
1933     }
1934 
1935     if (next_op_idx == -1) { // n is commutative, try rotations
1936       if (n->in(1)->Opcode() == next_op) {
1937         return 1;
1938       } else if (n->in(2)->Opcode() == next_op) {
1939         return 2;
1940       }
1941     } else {
1942       assert(next_op_idx > 0 && next_op_idx <= 2, "Bad argument index");
1943       if (n->in(next_op_idx)->Opcode() == next_op) {
1944         return next_op_idx;
1945       }
1946     }
1947     return -1;
1948   }
1949 public:
1950   FusedPatternMatcher(Node* op1_node, Node *mop_node, Opcodes con_op) :
1951     _op1_node(op1_node), _mop_node(mop_node), _con_op(con_op) { }
1952 
1953   bool match(Opcodes op1, int op1_op2_idx,  // op1 and the index of the op1->op2 edge, -1 if op1 is commutative
1954              Opcodes op2, int op2_con_idx,  // op2 and the index of the op2->con edge, -1 if op2 is commutative
1955              typename ConType::NativeType con_value) {
1956     if (_op1_node->Opcode() != op1) {
1957       return false;
1958     }
1959     if (_mop_node->outcnt() > 2) {
1960       return false;
1961     }
1962     op1_op2_idx = match_next(_op1_node, op2, op1_op2_idx);
1963     if (op1_op2_idx == -1) {
1964       return false;
1965     }
1966     // Memory operation must be the other edge
1967     int op1_mop_idx = (op1_op2_idx & 1) + 1;
1968 
1969     // Check that the mop node is really what we want
1970     if (_op1_node->in(op1_mop_idx) == _mop_node) {
1971       Node *op2_node = _op1_node->in(op1_op2_idx);
1972       if (op2_node->outcnt() > 1) {
1973         return false;
1974       }


1978         return false;
1979       }
1980       // Memory operation must be the other edge
1981       int op2_mop_idx = (op2_con_idx & 1) + 1;
1982       // Check that the memory operation is the same node
1983       if (op2_node->in(op2_mop_idx) == _mop_node) {
1984         // Now check the constant
1985         const Type* con_type = op2_node->in(op2_con_idx)->bottom_type();
1986         if (con_type != Type::TOP && ConType::as_self(con_type)->get_con() == con_value) {
1987           return true;
1988         }
1989       }
1990     }
1991     return false;
1992   }
1993 };
1994 
1995 
1996 bool Matcher::is_bmi_pattern(Node *n, Node *m) {
1997   if (n != NULL && m != NULL) {
1998     if (m->Opcode() == Opcodes::Op_LoadI) {
1999       FusedPatternMatcher<TypeInt> bmii(n, m, Opcodes::Op_ConI);
2000       return bmii.match(Opcodes::Op_AndI, -1, Opcodes::Op_SubI,  1,  0)  ||
2001              bmii.match(Opcodes::Op_AndI, -1, Opcodes::Op_AddI, -1, -1)  ||
2002              bmii.match(Opcodes::Op_XorI, -1, Opcodes::Op_AddI, -1, -1);
2003     } else if (m->Opcode() == Opcodes::Op_LoadL) {
2004       FusedPatternMatcher<TypeLong> bmil(n, m, Opcodes::Op_ConL);
2005       return bmil.match(Opcodes::Op_AndL, -1, Opcodes::Op_SubL,  1,  0) ||
2006              bmil.match(Opcodes::Op_AndL, -1, Opcodes::Op_AddL, -1, -1) ||
2007              bmil.match(Opcodes::Op_XorL, -1, Opcodes::Op_AddL, -1, -1);
2008     }
2009   }
2010   return false;
2011 }
2012 #endif // X86
2013 
2014 bool Matcher::clone_base_plus_offset_address(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) {
2015   Node *off = m->in(AddPNode::Offset);
2016   if (off->is_Con()) {
2017     address_visited.test_set(m->_idx); // Flag as address_visited
2018     mstack.push(m->in(AddPNode::Address), Pre_Visit);
2019     // Clone X+offset as it also folds into most addressing expressions
2020     mstack.push(off, Visit);
2021     mstack.push(m->in(AddPNode::Base), Pre_Visit);
2022     return true;
2023   }
2024   return false;
2025 }
2026 
2027 // A method-klass-holder may be passed in the inline_cache_reg
2028 // and then expanded into the inline_cache_reg and a method_oop register
2029 //   defined in ad_<arch>.cpp
2030 
2031 //------------------------------find_shared------------------------------------
2032 // Set bits if Node is shared or otherwise a root
2033 void Matcher::find_shared( Node *n ) {
2034   // Allocate stack of size C->live_nodes() * 2 to avoid frequent realloc
2035   MStack mstack(C->live_nodes() * 2);
2036   // Mark nodes as address_visited if they are inputs to an address expression
2037   VectorSet address_visited(Thread::current()->resource_area());
2038   mstack.push(n, Visit);     // Don't need to pre-visit root node
2039   while (mstack.is_nonempty()) {
2040     n = mstack.node();       // Leave node on stack
2041     Node_State nstate = mstack.state();
2042     Opcodes nop = n->Opcode();
2043     if (nstate == Pre_Visit) {
2044       if (address_visited.test(n->_idx)) { // Visited in address already?
2045         // Flag as visited and shared now.
2046         set_visited(n);
2047       }
2048       if (is_visited(n)) {   // Visited already?
2049         // Node is shared and has no reason to clone.  Flag it as shared.
2050         // This causes it to match into a register for the sharing.
2051         set_shared(n);       // Flag as shared and
2052         mstack.pop();        // remove node from stack
2053         continue;
2054       }
2055       nstate = Visit; // Not already visited; so visit now
2056     }
2057     if (nstate == Visit) {
2058       mstack.set_state(Post_Visit);
2059       set_visited(n);   // Flag as visited now
2060       bool mem_op = false;
2061 
2062       switch( nop ) {  // Handle some opcodes special
2063       case Opcodes::Op_Phi:             // Treat Phis as shared roots
2064       case Opcodes::Op_Parm:
2065       case Opcodes::Op_Proj:            // All handled specially during matching
2066       case Opcodes::Op_SafePointScalarObject:
2067         set_shared(n);
2068         set_dontcare(n);
2069         break;
2070       case Opcodes::Op_If:
2071       case Opcodes::Op_CountedLoopEnd:
2072         mstack.set_state(Alt_Post_Visit); // Alternative way
2073         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
2074         // with matching cmp/branch in 1 instruction.  The Matcher needs the
2075         // Bool and CmpX side-by-side, because it can only get at constants
2076         // that are at the leaves of Match trees, and the Bool's condition acts
2077         // as a constant here.
2078         mstack.push(n->in(1), Visit);         // Clone the Bool
2079         mstack.push(n->in(0), Pre_Visit);     // Visit control input
2080         continue; // while (mstack.is_nonempty())
2081       case Opcodes::Op_ConvI2D:         // These forms efficiently match with a prior
2082       case Opcodes::Op_ConvI2F:         //   Load but not a following Store
2083         if( n->in(1)->is_Load() &&        // Prior load
2084             n->outcnt() == 1 &&           // Not already shared
2085             n->unique_out()->is_Store() ) // Following store
2086           set_shared(n);       // Force it to be a root
2087         break;
2088       case Opcodes::Op_ReverseBytesI:
2089       case Opcodes::Op_ReverseBytesL:
2090         if( n->in(1)->is_Load() &&        // Prior load
2091             n->outcnt() == 1 )            // Not already shared
2092           set_shared(n);                  // Force it to be a root
2093         break;
2094       case Opcodes::Op_BoxLock:         // Cant match until we get stack-regs in ADLC
2095       case Opcodes::Op_IfFalse:
2096       case Opcodes::Op_IfTrue:
2097       case Opcodes::Op_MachProj:
2098       case Opcodes::Op_MergeMem:
2099       case Opcodes::Op_Catch:
2100       case Opcodes::Op_CatchProj:
2101       case Opcodes::Op_CProj:
2102       case Opcodes::Op_JumpProj:
2103       case Opcodes::Op_JProj:
2104       case Opcodes::Op_NeverBranch:
2105         set_dontcare(n);
2106         break;
2107       case Opcodes::Op_Jump:
2108         mstack.push(n->in(1), Pre_Visit);     // Switch Value (could be shared)
2109         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
2110         continue;                             // while (mstack.is_nonempty())
2111       case Opcodes::Op_StrComp:
2112       case Opcodes::Op_StrEquals:
2113       case Opcodes::Op_StrIndexOf:
2114       case Opcodes::Op_StrIndexOfChar:
2115       case Opcodes::Op_AryEq:
2116       case Opcodes::Op_HasNegatives:
2117       case Opcodes::Op_StrInflatedCopy:
2118       case Opcodes::Op_StrCompressedCopy:
2119       case Opcodes::Op_EncodeISOArray:
2120         set_shared(n); // Force result into register (it will be anyways)
2121         break;
2122       case Opcodes::Op_ConP: {  // Convert pointers above the centerline to NUL
2123         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2124         const TypePtr* tp = tn->type()->is_ptr();
2125         if (tp->_ptr == TypePtr::AnyNull) {
2126           tn->set_type(TypePtr::NULL_PTR);
2127         }
2128         break;
2129       }
2130       case Opcodes::Op_ConN: {  // Convert narrow pointers above the centerline to NUL
2131         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2132         const TypePtr* tp = tn->type()->make_ptr();
2133         if (tp && tp->_ptr == TypePtr::AnyNull) {
2134           tn->set_type(TypeNarrowOop::NULL_PTR);
2135         }
2136         break;
2137       }
2138       case Opcodes::Op_Binary:         // These are introduced in the Post_Visit state.
2139         ShouldNotReachHere();
2140         break;
2141       case Opcodes::Op_ClearArray:
2142       case Opcodes::Op_SafePoint:
2143         mem_op = true;
2144         break;
2145       default:
2146         if( n->is_Store() ) {
2147           // Do match stores, despite no ideal reg
2148           mem_op = true;
2149           break;
2150         }
2151         if( n->is_Mem() ) { // Loads and LoadStores
2152           mem_op = true;
2153           // Loads must be root of match tree due to prior load conflict
2154           if( C->subsume_loads() == false )
2155             set_shared(n);
2156         }
2157         // Fall into default case
2158         if( n->ideal_reg() != Opcodes::Op_Node )
2159           set_dontcare(n);  // Unmatchable Nodes
2160       } // end_switch
2161 
2162       for(int i = n->req() - 1; i >= 0; --i) { // For my children
2163         Node *m = n->in(i); // Get ith input
2164         if (m == NULL) continue;  // Ignore NULLs
2165         Opcodes mop = m->Opcode();
2166 
2167         // Must clone all producers of flags, or we will not match correctly.
2168         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
2169         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
2170         // are also there, so we may match a float-branch to int-flags and
2171         // expect the allocator to haul the flags from the int-side to the
2172         // fp-side.  No can do.
2173         if( _must_clone[static_cast<uint>(mop)] ) {
2174           mstack.push(m, Visit);
2175           continue; // for(int i = ...)
2176         }
2177 
2178         if( mop == Opcodes::Op_AddP && m->in(AddPNode::Base)->is_DecodeNarrowPtr()) {
2179           // Bases used in addresses must be shared but since
2180           // they are shared through a DecodeN they may appear
2181           // to have a single use so force sharing here.
2182           set_shared(m->in(AddPNode::Base)->in(1));
2183         }
2184 
2185         // if 'n' and 'm' are part of a graph for BMI instruction, clone this node.
2186 #ifdef X86
2187         if (UseBMI1Instructions && is_bmi_pattern(n, m)) {
2188           mstack.push(m, Visit);
2189           continue;
2190         }
2191 #endif
2192 
2193         // Clone addressing expressions as they are "free" in memory access instructions
2194         if (mem_op && i == MemNode::Address && mop == Opcodes::Op_AddP &&
2195             // When there are other uses besides address expressions
2196             // put it on stack and mark as shared.
2197             !is_visited(m)) {
2198           // Some inputs for address expression are not put on stack
2199           // to avoid marking them as shared and forcing them into register
2200           // if they are used only in address expressions.
2201           // But they should be marked as shared if there are other uses
2202           // besides address expressions.
2203 
2204           if (clone_address_expressions(m->as_AddP(), mstack, address_visited)) {
2205             continue;
2206           }
2207         }   // if( mem_op &&
2208         mstack.push(m, Pre_Visit);
2209       }     // for(int i = ...)
2210     }
2211     else if (nstate == Alt_Post_Visit) {
2212       mstack.pop(); // Remove node from stack
2213       // We cannot remove the Cmp input from the Bool here, as the Bool may be
2214       // shared and all users of the Bool need to move the Cmp in parallel.
2215       // This leaves both the Bool and the If pointing at the Cmp.  To
2216       // prevent the Matcher from trying to Match the Cmp along both paths
2217       // BoolNode::match_edge always returns a zero.
2218 
2219       // We reorder the Op_If in a pre-order manner, so we can visit without
2220       // accidentally sharing the Cmp (the Bool and the If make 2 users).
2221       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
2222     }
2223     else if (nstate == Post_Visit) {
2224       mstack.pop(); // Remove node from stack
2225 
2226       // Now hack a few special opcodes
2227       switch( n->Opcode() ) {       // Handle some opcodes special
2228       case Opcodes::Op_StorePConditional:
2229       case Opcodes::Op_StoreIConditional:
2230       case Opcodes::Op_StoreLConditional:
2231       case Opcodes::Op_CompareAndExchangeB:
2232       case Opcodes::Op_CompareAndExchangeS:
2233       case Opcodes::Op_CompareAndExchangeI:
2234       case Opcodes::Op_CompareAndExchangeL:
2235       case Opcodes::Op_CompareAndExchangeP:
2236       case Opcodes::Op_CompareAndExchangeN:
2237       case Opcodes::Op_WeakCompareAndSwapB:
2238       case Opcodes::Op_WeakCompareAndSwapS:
2239       case Opcodes::Op_WeakCompareAndSwapI:
2240       case Opcodes::Op_WeakCompareAndSwapL:
2241       case Opcodes::Op_WeakCompareAndSwapP:
2242       case Opcodes::Op_WeakCompareAndSwapN:
2243       case Opcodes::Op_CompareAndSwapB:
2244       case Opcodes::Op_CompareAndSwapS:
2245       case Opcodes::Op_CompareAndSwapI:
2246       case Opcodes::Op_CompareAndSwapL:
2247       case Opcodes::Op_CompareAndSwapP:
2248       case Opcodes::Op_CompareAndSwapN: {   // Convert trinary to binary-tree
2249         Node *newval = n->in(MemNode::ValueIn );
2250         Node *oldval  = n->in(LoadStoreConditionalNode::ExpectedIn);
2251         Node *pair = new BinaryNode( oldval, newval );
2252         n->set_req(MemNode::ValueIn,pair);
2253         n->del_req(LoadStoreConditionalNode::ExpectedIn);
2254         break;
2255       }
2256       case Opcodes::Op_CMoveD:              // Convert trinary to binary-tree
2257       case Opcodes::Op_CMoveF:
2258       case Opcodes::Op_CMoveI:
2259       case Opcodes::Op_CMoveL:
2260       case Opcodes::Op_CMoveN:
2261       case Opcodes::Op_CMoveP:
2262       case Opcodes::Op_CMoveVD:  {
2263         // Restructure into a binary tree for Matching.  It's possible that
2264         // we could move this code up next to the graph reshaping for IfNodes
2265         // or vice-versa, but I do not want to debug this for Ladybird.
2266         // 10/2/2000 CNC.
2267         Node *pair1 = new BinaryNode(n->in(1),n->in(1)->in(1));
2268         n->set_req(1,pair1);
2269         Node *pair2 = new BinaryNode(n->in(2),n->in(3));
2270         n->set_req(2,pair2);
2271         n->del_req(3);
2272         break;
2273       }
2274       case Opcodes::Op_LoopLimit: {
2275         Node *pair1 = new BinaryNode(n->in(1),n->in(2));
2276         n->set_req(1,pair1);
2277         n->set_req(2,n->in(3));
2278         n->del_req(3);
2279         break;
2280       }
2281       case Opcodes::Op_StrEquals:
2282       case Opcodes::Op_StrIndexOfChar: {
2283         Node *pair1 = new BinaryNode(n->in(2),n->in(3));
2284         n->set_req(2,pair1);
2285         n->set_req(3,n->in(4));
2286         n->del_req(4);
2287         break;
2288       }
2289       case Opcodes::Op_StrComp:
2290       case Opcodes::Op_StrIndexOf: {
2291         Node *pair1 = new BinaryNode(n->in(2),n->in(3));
2292         n->set_req(2,pair1);
2293         Node *pair2 = new BinaryNode(n->in(4),n->in(5));
2294         n->set_req(3,pair2);
2295         n->del_req(5);
2296         n->del_req(4);
2297         break;
2298       }
2299       case Opcodes::Op_StrCompressedCopy:
2300       case Opcodes::Op_StrInflatedCopy:
2301       case Opcodes::Op_EncodeISOArray: {
2302         // Restructure into a binary tree for Matching.
2303         Node* pair = new BinaryNode(n->in(3), n->in(4));
2304         n->set_req(3, pair);
2305         n->del_req(4);
2306         break;
2307       }
2308       default:
2309         break;
2310       }
2311     }
2312     else {
2313       ShouldNotReachHere();
2314     }
2315   } // end of while (mstack.is_nonempty())
2316 }
2317 
2318 #ifdef ASSERT
2319 // machine-independent root to machine-dependent root
2320 void Matcher::dump_old2new_map() {
2321   _old2new_map.dump();
2322 }
2323 #endif
2324 
2325 //---------------------------collect_null_checks-------------------------------
2326 // Find null checks in the ideal graph; write a machine-specific node for
2327 // it.  Used by later implicit-null-check handling.  Actually collects
2328 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2329 // value being tested.
2330 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2331   Node *iff = proj->in(0);
2332   if( iff->Opcode() == Opcodes::Op_If ) {
2333     // During matching If's have Bool & Cmp side-by-side
2334     BoolNode *b = iff->in(1)->as_Bool();
2335     Node *cmp = iff->in(2);
2336     Opcodes opc = cmp->Opcode();
2337     if (opc != Opcodes::Op_CmpP && opc != Opcodes::Op_CmpN) return;
2338 
2339     const Type* ct = cmp->in(2)->bottom_type();
2340     if (ct == TypePtr::NULL_PTR ||
2341         (opc == Opcodes::Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2342 
2343       bool push_it = false;
2344       if( proj->Opcode() == Opcodes::Op_IfTrue ) {
2345 #ifndef PRODUCT
2346         extern int all_null_checks_found;
2347         all_null_checks_found++;
2348 #endif
2349         if( b->_test._test == BoolTest::ne ) {
2350           push_it = true;
2351         }
2352       } else {
2353         assert( proj->Opcode() == Opcodes::Op_IfFalse, "" );
2354         if( b->_test._test == BoolTest::eq ) {
2355           push_it = true;
2356         }
2357       }
2358       if( push_it ) {
2359         _null_check_tests.push(proj);
2360         Node* val = cmp->in(1);
2361 #ifdef _LP64
2362         if (val->bottom_type()->isa_narrowoop() &&
2363             !Matcher::narrow_oop_use_complex_address()) {
2364           //
2365           // Look for DecodeN node which should be pinned to orig_proj.
2366           // On platforms (Sparc) which can not handle 2 adds
2367           // in addressing mode we have to keep a DecodeN node and
2368           // use it to do implicit NULL check in address.
2369           //
2370           // DecodeN node was pinned to non-null path (orig_proj) during
2371           // CastPP transformation in final_graph_reshaping_impl().
2372           //
2373           uint cnt = orig_proj->outcnt();


2414       // Is a match-tree root, so replace with the matched value
2415       _null_check_tests.map(i+1, new_val);
2416     } else {
2417       // Yank from candidate list
2418       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2419       _null_check_tests.map(i,_null_check_tests[--cnt]);
2420       _null_check_tests.pop();
2421       _null_check_tests.pop();
2422       i-=2;
2423     }
2424   }
2425 }
2426 
2427 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2428 // atomic instruction acting as a store_load barrier without any
2429 // intervening volatile load, and thus we don't need a barrier here.
2430 // We retain the Node to act as a compiler ordering barrier.
2431 bool Matcher::post_store_load_barrier(const Node* vmb) {
2432   Compile* C = Compile::current();
2433   assert(vmb->is_MemBar(), "");
2434   assert(vmb->Opcode() != Opcodes::Op_MemBarAcquire && vmb->Opcode() != Opcodes::Op_LoadFence, "");
2435   const MemBarNode* membar = vmb->as_MemBar();
2436 
2437   // Get the Ideal Proj node, ctrl, that can be used to iterate forward
2438   Node* ctrl = NULL;
2439   for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) {
2440     Node* p = membar->fast_out(i);
2441     assert(p->is_Proj(), "only projections here");
2442     if ((p->as_Proj()->_con == TypeFunc::Control) &&
2443         !C->node_arena()->contains(p)) { // Unmatched old-space only
2444       ctrl = p;
2445       break;
2446     }
2447   }
2448   assert((ctrl != NULL), "missing control projection");
2449 
2450   for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) {
2451     Node *x = ctrl->fast_out(j);
2452     Opcodes xop = x->Opcode();
2453 
2454     // We don't need current barrier if we see another or a lock
2455     // before seeing volatile load.
2456     //
2457     // Op_Fastunlock previously appeared in the Op_* list below.
2458     // With the advent of 1-0 lock operations we're no longer guaranteed
2459     // that a monitor exit operation contains a serializing instruction.
2460 
2461     if (xop == Opcodes::Op_MemBarVolatile ||
2462         xop == Opcodes::Op_CompareAndExchangeB ||
2463         xop == Opcodes::Op_CompareAndExchangeS ||
2464         xop == Opcodes::Op_CompareAndExchangeI ||
2465         xop == Opcodes::Op_CompareAndExchangeL ||
2466         xop == Opcodes::Op_CompareAndExchangeP ||
2467         xop == Opcodes::Op_CompareAndExchangeN ||
2468         xop == Opcodes::Op_WeakCompareAndSwapB ||
2469         xop == Opcodes::Op_WeakCompareAndSwapS ||
2470         xop == Opcodes::Op_WeakCompareAndSwapL ||
2471         xop == Opcodes::Op_WeakCompareAndSwapP ||
2472         xop == Opcodes::Op_WeakCompareAndSwapN ||
2473         xop == Opcodes::Op_WeakCompareAndSwapI ||
2474         xop == Opcodes::Op_CompareAndSwapB ||
2475         xop == Opcodes::Op_CompareAndSwapS ||
2476         xop == Opcodes::Op_CompareAndSwapL ||
2477         xop == Opcodes::Op_CompareAndSwapP ||
2478         xop == Opcodes::Op_CompareAndSwapN ||
2479         xop == Opcodes::Op_CompareAndSwapI) {
2480       return true;
2481     }
2482 
2483     // Op_FastLock previously appeared in the Op_* list above.
2484     // With biased locking we're no longer guaranteed that a monitor
2485     // enter operation contains a serializing instruction.
2486     if ((xop == Opcodes::Op_FastLock) && !UseBiasedLocking) {
2487       return true;
2488     }
2489 
2490     if (x->is_MemBar()) {
2491       // We must retain this membar if there is an upcoming volatile
2492       // load, which will be followed by acquire membar.
2493       if (xop == Opcodes::Op_MemBarAcquire || xop == Opcodes::Op_LoadFence) {
2494         return false;
2495       } else {
2496         // For other kinds of barriers, check by pretending we
2497         // are them, and seeing if we can be removed.
2498         return post_store_load_barrier(x->as_MemBar());
2499       }
2500     }
2501 
2502     // probably not necessary to check for these
2503     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) {
2504       return false;
2505     }
2506   }
2507   return false;
2508 }
2509 
2510 // Check whether node n is a branch to an uncommon trap that we could
2511 // optimize as test with very high branch costs in case of going to
2512 // the uncommon trap. The code must be able to be recompiled to use
2513 // a cheaper test.


< prev index next >